
Chapter 0

QUERYING SEMANTIC WEB CONTENTS
A CASE STUDY

Loïc Royer1, Benedikt Linse2, Thomas Wächter1, Tim Furche2, François Bry
2 and Michael Schroeder1

1Biotec, Dresden University of Technology, Germany
2Institute for Informatics, University of Munich

Abstract:
Semantic web technologies promise to ease the pain of data and system
integration in the life sciences. The semantic web consists of standards such as
XML for mark-up of contents, RDF for representation of triplets, and OWL to
define ontologies. We discuss three approaches for querying semantic web
contents and building integrated bioinformatics applications, which allows
bioinformaticians to make an informed choice for their data integration needs.
Besides already established approach such as XQuery, we compare two novel
rule-based approaches, namely Xcerpt - a versatile XML and RDF query
language, and Prova - a language for rule-based Java scripting. We
demonstrate the core features and limitations of these three approaches
through a case study, which comprises an ontology browser, which supports
retrieval of protein structure and sequence information for proteins annotated
with terms from the ontology.

Key words: Bioinformatics, Semantic Web, UniProt, Protein Data Bank, PubMed, Gene
Ontology, Prova, Prolog, Java, Xcerpt, logic programming, declarative
programming, Web, query languages, XML, RDF, rules, semi-structured data,
query patterns, simulation unification, XQuery, XPath, Relational Databases.

1. INTRODUCTION

Bioinformatics is a rapidly growing field in which innovation and
discoveries often arise by the correlative analysis of massive amounts of data
from widely different sources. The Semantic Web and its promises of
intelligent integration of services and of information through 'semantics' can

2 Chapter 0

only be fulfilled in the life sciences and beyond if its technologies satisfy a
minimum set of pragmatic requirements:

• Ease of use - A language must be as simple as possible. Users will go for

a not so powerful but comfortable solution instead of a very rich
language that is too complicated to use.

• Platform independence - Operating system idiosyncrasies are
increasingly becoming a nuisance, the internet is universal, and so must
be a language for the semantic web.

• Tool support - Nowadays, it is not enough to provide language
specifications and the corresponding compilers and/or interpreters.
Programmers require proper support tools like code-aware editors,
debuggers, query builders and validation tools.

• Scalability - The volume of information being manipulated in

bioinformatics is increasing exponentially, the runtime machinery of a
language for integrating such data must be able to scale and cope with the
processing needs of today and tomorrow.

• Modularity - Modularity is a very fundamental idea in software

engineering and should be part of any modern programming language.

• Extensibility - Languages should be as user extensible as possible to

accommodate unforeseen but useful extensions that users might need and
be able to implement.

• Declarativeness - The language should be high-level and support the

specification of what needs to be computed rather than how.

2. DATA INTEGRATION IN BIOINFORMATICS

The amount of available data in the life sciences increases rapidly and so
does the variety of data formats used. Bioinformatics has a tradition for
legacy text-based dataformats and databases such as UniProt [2] for protein
sequences, PDB [3] for 3D structures of proteins, or PubMed [4] for
scientific literature.

 UniProt, PDB, PubMed

0. QUERYING SEMANTIC WEB CONTENTS 3

Today, many databases, including the above are available in Extensible
Markup Language (www.w3.org/XML/).

Due to its hierarchical structure, XML is a flexible data format. It is a
text-based format, is human-readable, and its support for Unicode ensures
portability throughout systems. Together with XML a whole family of
languages (www.w3.org/TR) support querying and transformation (XPath,
XQuery, and XSLT). Additionally APIs such as JDOM (www.jdom.org), an
implementation of the Document Object Model (DOM), and the Simple API
for XML (www.saxproject.org) were developed in support of XML.

Beside the need of technologies for data handling, a major task in
bioinformatics is the one of data integration. The required mapping between
entities from different data sources can be managed through the use of an
ontology.

Ontologies in Bioinformatics
Currently there is no agreed vocabulary used in molecular biology. For

example, gene names are not used in a consistent way. EntrezGene [4]
addresses this problem by providing aliases. EntrezGene lists for example
eight aliases for a gene that is responsible for breast cancer (BRCAI; BRCC1;
IRIS; PSCP; RNF53; breast cancer 1, early onset; breast and ovarian cancer
susceptibility protein 1; and breast and ovarian cancer susceptibility protein
variant).

At the time of writing, searching PubMed for PSCP returns 2417 relevant
articles. Searching for papillary serous carcinoma of the peritoneum, returns
89 articles. However, searching for both terms returns only 19 hits. In
general, there is a pressing need in molecular biology to use common
vocabularies. This need has been addressed through the ongoing
development of biomedical ontologies. Starting with the GeneOntology
(www.geneontology.org) [1], the Open Biomedical Ontologies effort
(obo.sourceforge.net) currently hosts 59 biomedical ontologies ranging from
anatomy over chemical compounds to organism specific ontologies.

Gene Ontology (GO)
A core ontology is the Gene Ontology [1], which contains over 20000

terms describing biological processes, molecular functions, and cellular
components for gene products. The biological process ontology deals with
biological objectives to which the gene or gene product contributes. A
process is accomplished via one or more ordered assemblies of molecular
functions. The molecular function ontology deals with the biochemical
activities of a gene product. It describes what is done without specifying
where or when the event takes place. The cellular component ontology
describes the places where a gene product can be active. The GO ontologies

4 Chapter 0

have become a de facto standard and are used by many databases as
annotation vocabulary and are available in various formats: flat files, the
Extensible Mark-up Language (XML), the resource description format
(RDF), and as a MySQL database.

3. CASE STUDY: PROTEINBROWSER

Biological databases are growing rapidly. Currently there is much effort
spent on annotating these databases with terms from controlled, hierarchical
vocabularies such as the Gene Ontology. It is often useful to be able to
retrieve all entries from a database, which are annotated with a given term
from the ontology. The ProteinBrowser use-case shows how typically one
needs to join data from different sources. The starting point is the Gene
Ontology (GO), from which a hierarchy of terms is obtained. Using the Gene
Ontology Annotation (GOA) database, the user can link GO terms to the
UniProt identifiers of proteins that have been annotated with biological
processes, molecular functions, and cellular components. After choosing a
specific protein, the user can, remotely, query additional information from
the UniProt database, for example the sequence of the protein. In turn, the
PDB database can be remotely queried for still additional information.
Finally, using the PubMed identifier of the publication in which the structure
of the protein was published, one can query PubMed and obtain the title and
abstract of the publication.

As shown in Fig. 0-1, the ProteinBrowser example is specified by the
following workflow:

Figure 0-2. ProteinBrowser Workflow: from GO to PubMed via GOA, UniProt and PDB.

0. QUERYING SEMANTIC WEB CONTENTS 5

• A term is chosen from the Gene Ontology tree. The Gene Ontology exists
in various formats: MySql database, XML, RDF.

• All relevant proteins associated through the GOA

(http://www.ebi.ac.uk/GOA/) database are listed.

• A protein is chosen from the list.

• UniProt is queried for information about this protein. The protein's name,

its sequence length, mass, sequence, and corresponding PDB identifier
can be retrieved by querying the XML file linked by the following
parameterized URL:
 http://www.ebi.uniprot.org/entry/<UniprotId>? format=xml&ascii

• PDB is queried for additional information. The three lengths width,

height and depth and the PubMed identifier of the publication in which
the structure was described, can be obtained by querying the XML file
linked by the following parameterized URL:
 http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&structureId=<PDBid>

• Retrieve PubMed abstract title and text where the structure was

published. This uses the Pubmed ID (if available) and queries the website
of NCBI with the PubMed Id at this address:
 http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&retmode=xml
 &rettype=full&id=<PubMedId>

As shown in Fig. 0-3, this workflow involves accessing local and remote

databases, in the form of files, possibly in XML format and of 'pragmatic'
web-services in the form of parametrized URLs linking to XML files (also
known as REST-style Web Services).

6 Chapter 0

Figure 0-4. ProteinBrowser: integrates data from GO, UniProt, PDB and PubMed.

We will compare three approaches to implement this workflow. The first

is based on a novel hybrid object-oriented and declarative programing
language, Prova. The second is based on standard XML technologies such as
XQuery and XPath. The third is based on a novel declarative query language
for XML documents: Xcerpt.

• Prova http://www.prova.ws
• XQuery/XPath http://www.w3.org
• Xcerpt http://www.xcerpt.org

3.1 Prova

Prova [5] is a rule-based Java scripting language. The use of rules allows
the declarative specification of integration needs at a high-level, separately
from implementation details. The transparent integration of Java caters for
easy access and integration of database access, web services, and many other
Java services. This way Prova combines the advantages of rule-based
programming and object-oriented programming. Prova satisfies the
following design goals:

• Combine the benefits of declarative and object-oriented programming;

0. QUERYING SEMANTIC WEB CONTENTS 7

• Merge the syntaxes and semantics of Prolog, as rule-based language, and

Java as object-oriented languages;
• Expose logic as rules;
• Access data sources via wrappers written in Java or command-line shells

like Perl;
• Make all Java API from available packages directly accessible from

rules;
• Run within the Java runtime environment;
• Be compatible with web- and agent-based software architectures;
• Provide functionality necessary for rapid application prototyping and low

cost maintenance.

Workflow solved with Prova
The Prova code closely resembles a declarative logic program. Rules are

written down in the form conclusion :- premise where :- is read
'if'. Instead of relying on an internal knowledge base, which needs to be
loaded entirely into memory, Prova can access external knowledge wrapped
as predicates. Thus there is a clean separation between the details needed to
access the external data and the way this data is joined in the workflow.
Prova applies so-called backward-chaining to evaluate queries.

Wrapping the Gene Ontology and the Gene Ontology Annotation
For the Prova implementation of the ProteinBrowser we use the Gene

Ontology and the protein annotations in their relational database format. As
shown on Fig. 0-5 accessing databases from Prova is very simple.

8 Chapter 0

% Imports some utility functions
:-eval(consult("utils.prova")).

% Define database location
location(database,"GO","jdbc:mysql://server","guest","guest").

% T2 is-a T1 if in the term2term table of the database
isaDB(T2,T1) :-
 dbopen("GO",DB),
 concat(["term1_id=",T1," and relationship_type_id=2"],

WhereClause),
 sql_select(DB,term2term,[term2_id,T2],[where, WhereClause]).

% A term T is-a T
isa(T,T).

% Recursive definition of is-a:
% A term T2 is a T1 if T3 is a T1 and T2 is a T3
isa(T2,T1) :-
 isaDB(T3,T1),
 isa(T2,T3).

Figure 0-6. Wrapping the Gene Ontology database and the isa relationship.

After importing some utility predicates for connecting to databases, the
location predicate is used to define a database location, the dbopen
predicate is used to open a connection to the database, and the
sql_select predicate provides a nice and practical declarative wrapping
of the select statement of relational databases. In order to obtain all sub-
terms of a given term, we simply compute the transitive closure of the sub-
term relationship defined by the recursive predicate isa.

Finally, in order to retrieve the UniProt identifiers corresponding to a
given gene ontology term, we need the name2uniProtId predicate (see
Fig. 0-7).

0. QUERYING SEMANTIC WEB CONTENTS 9

name2UniProtId(Term,UniProtId) :-
 dbopen("GO",DB),
 concat(["uni.GOid = ", Term],Where),
 concat(["go.term as term, goa.goa_human as uni"],From),
 sql_select(DB,From,['uni.DB_Object_ID',UniProtId],
[where,Where]).

Figure 0-8. Wrapping the Gene Ontology Annotation database.

Wrapping UniProt, PDB and Medline
The three databases UniProt, PDB and Medline can be remotely accessed

through a very simple web interface: a parameterized URL links to an XML
file containing the relevant information for a given identifier.

As shown in Figure 0-9 The three predicates queryUniProt,
queryPDB, queryPubMed, wrap the downloading and parsing of the
XML files in a few lines:

10 Chapter 0

urlUniProtPrefix("http://www.ebi.uniprot.org/entry/")
urlUniProtPostfix("?format=xml&ascii")
urlPDB("http://www.rcsb.org/pdb/displayFile.do?fileFormat=XML&s
tructureId=")
urlPubMed("http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.
fcgi?db=pubmed&retmode=xml&rettype=full&id=")

% Query UniProt by giving a UniProt Id and getting the length,
mass, sequence, and PDB id
queryUniProt(UniProtId,Name,Length,Mass,Sequence,PDBId):-
 urlUniProtPrefix(URLpre),
 urlUniProtPostfix(URLpost),
 concat([URLpre,UniProtId,URLpost],URLString),
 retrieveXML(URLString,Root),
 children(Root,"entry",EntryNode),
 children(EntryNode,"protein",ProteinNode),
 descendantValue(ProteinNode,"name",Name),!,
 descendant(EntryNode,"sequence",SequenceNode),
 nodeAttributeByName(SequenceNode,"length", Length),
 nodeAttributeByName(SequenceNode,"mass", Mass),
 nodevalue(SequenceNode,Sequence).

% Query PDB by giving a PDB Id and getting three lengths a,b,c
and a PubMed id of a publication
queryPDB(PDBId,LA,LB,LC,PMID):-
 urlPDB(URL),
 concat([URL,PDBId],URLString),
 retrieveXML(URLString,Root),
 descendantValue(Root,"PDBx:length_a",LA),!,
 descendantValue(Root,"PDBx:length_b",LB),!,
 descendantValue(Root,"PDBx:length_c",LC),!,
 descendantValue(Root,"PDBx:pdbx_database_id_PubMed",PMID).

% Query pubMed by giving a PubMed Id and getting the text of
the abstract
queryPubMed(PMID,AbstractTitle, AbstractText):-
 urlPubMed(URL),
 concat([URL,PDBId],URLString),
 retrieveXML(URLString,Root),
 descendantValue(Root,"ArticleTitle",AbstractTitle),!,
 descendantValue(Root,"AbstractText",AbstractText),!.

Figure 0-10. Wrapping UniProt, PDB and Medline.

The previous predicates use the following utility predicates:

0. QUERYING SEMANTIC WEB CONTENTS 11

retrieveXML(URLString,Root):-
 URL = java.net.URL(URLString),
 Stream = URL.openStream(),
 ISR = java.io.InputStreamReader(Stream),
 XMLResult = XML(ISR),
 Root = XMLResult.getDocumentElement().

Figure 0-11. XML retrieval.

The retrieveXML predicate downloads an XML file from a specified
URL, and returns the root DOM (Document Object Model) tree
representation of the XML file.

In Fig. 0-12, a set of predicates provide functionality to query nodes and
values from the DOM tree:

12 Chapter 0

% Simulates an XPath traversal.
descendantsValue(Current,Name,Value):-
 descendants(Current,Name,Node),
 nodeValue(Node,Value),!.

% Descendant (any depth), similar XPath: //*
descendants(Node,Node).
descendants(Element,S2):-
 children(Element,S1),
 descendants(S1,S2).

% Descendant with given name, similar XPath: //Name
descendants(Node,Name,Descendant):-
 descendants(Node,Descendant),
 nodeName(Descendant,Name).

% Definition for a direct child, similar XPath: /*
children(Element,Child):-
 Childs = Element.getChildNodes(),
 Childs.nodes(Child).

% Child with a given name, similar XPath: /Name
children(Node,Name,Child):-
 children(Node,Child),
 nodeName(Child,Name).

nodeName(Node,Name):-
 Name = Node.getNodeName().

nodeValue(Node,Value):-
 Data = Node.getFirstChild(),
 Raw = Data.getNodeValue(),
 Value = Raw.trim().

Figure 0-13. XML Querying.

Assembling the Workflow
Now that we have wrapped the GO and GOA databases, as well as the

remote XML ressources for UniProt, PDB and PubMed. We can proceed
with the assembly of the ProteinBrowser workflow, as shown in Fig. 0-14.

0. QUERYING SEMANTIC WEB CONTENTS 13

workflowStep1(GoTermName,UniProtId):-
 name2term(GoTermName,GoTerm),
 isa(GoTerm,Descendant),
 name2UniProtId(Descendant,UniProtId),
 java.lang.System.out.println(UniProtId).

workflowStep2(UniProtId):-
 queryUniProt(UniProtId,Name,Length,Mass,Sequence,PDBId),
 java.lang.System.out.println(Name),
 java.lang.System.out.println(Length),
 java.lang.System.out.println(Mass),
 java.lang.System.out.println(Sequence),
 queryPDB(PDBId,LA,LB,LC,PMID),
 java.lang.System.out.println(LA),
 java.lang.System.out.println(LB),
 java.lang.System.out.println(LC),
 queryPubMed(PMID,AbstractTitle, AbstractText),
 java.lang.System.out.println(AbstractTitle),
 java.lang.System.out.println(AbstractText).

 % Given the name N, get the term id T
name2term(N,T) :-
 dbopen("GO",DB),
 concat(["name like ",N],WhereClause),
 sql_select(DB,term,[id,T],[where, WhereClause]).

Figure 0-15. Workflow.

The first step is simply to enumerate all UniProt identifiers UniProtId

annotated with terms and subterms of a given Gene Ontology term
GoTermName. The second step uses the chosen protein UniProt identifier
and starts a cascade of three remote queries to the UniProt, PDB and
PubMed web sites. All relevant information collected is printed out.

3.2 XQuery and XPath

XPath allows the user to address certain parts of an XML document.

Beside many applications it is used in XQuery, which is a declarative query-
and transformation language for semi-structured data. It is widely used to
formulate queries on RDF and XML documents. These documents can be
provided as XML files, as XML views onto a XML database or created by a
middleware. XQuery 1.0 is a W3C Candidate Recommendation and is
already supported by many software vendors (e.g. IBM DB2, Oracle 10g
Release 2, Tamino XML Server).

14 Chapter 0

The Workflow Solved with XQuery
An XQuery implementation of the workflow works on XML data only

and can be realized with all program logic specified as XQuery. We note that
XQuery as described in the language standard is expressive enough to
aggregate data from different data sources, locally or remotely.

Recursive traversal of the Gene Ontology
With XQuery the recursive traversal of the GO has to be programmed

explicitely. In Fig. 0-16 the functions local:getDescendants and
local:getChildren show how this simple recursion can be specified
with XQuery. The locally available GO OWL file is loaded using the doc()
function, which also works for remote resources of plain XML content. By
using XQuery from within Java it is possible to preserve the DOM tree, so
that it only has to be loaded once.

declare function local:getChildren($term , $context)
{
 for $my_term in $context//go:term
 where $my_term/go:is_a/@rdf:resource = $term/@rdf:about
 return
 $my_term
};

declare function local:getDescendants($term, $context)
{
 for $my_term in local:getChildren($term, $context)
 return
 <descendants>
 {
 local:getDescendants($my_term , $context), $my_term
 }
 </descendants>
};

Figure 0-17. Recursive XQuery to create the transitive closure over the sub-class relations.

Assembling the Workflow
Fig. 0-18 shows the complete workflow as a batch process. Given a GO

accession number like ''GO:0000001'' an XML document is created which
contains all proteins associated with the specified term or any of its child
terms. For all these proteins additional information is retrieved from
UniProt. Further, database references to structural data in PDB is used, if

0. QUERYING SEMANTIC WEB CONTENTS 15

found in UniProt. For the interactive browser these parts are separated and
the functions are called once the GO term or protein is selected in the GUI.

xquery version "1.0";
declarenamespace go = "http://www.geneontology.org/dtds/go.dtd#";
declare namespace rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#";
declare namespace fn = "http://www.w3.org/2005/xpath-functions";
declare namespace uniprot = "http://uniprot.org/uniprot";
declare namespace PDBx = "http://deposit.pdb.org/pdbML/pdbx.xsd";
declare namespace xsi="http://www.w3.org/2001/XMLSchema-instance";

declare variable $GO as xs:string external;

(: function from www.w3c.org :)
declare function local:distinct-nodes-stable ($arg as node()*) as node()*
{
 for $a at $apos in $arg
 let $before_a := fn:subsequence($arg, 1, $apos - 1)
 where every $ba in $before_a satisfies not($ba is $a)
 return $a
};

declare function local:getChildren($term , $context) { ... };
declare function local:getDescendants($term, $context) { ... };
declare function local:queryUniprot($uniprotID) { ... };
declare function local:queryPDB($pdbID) { ... };

(: Construct a result set for one GO term :)
<terms>
{
 let $root :=doc("/data/go_200605-assocdb.rdf-xml")
 for $term in $root//go:term
 where $term/go:accession/text() = $GO
 return
 <result query_term_acc="{$term/go:accession/text()}">
 {
 let $terms := ($term, local:getDescendants($term,$root))
 for $d_term in $terms
 return
 for $dbxref in $d_term//go:dbxref
 where $dbxref/go:database_symbol/text()="UniProt"
 return
 for $uniprot_id in local:distinct-nodes-

stable($dbxref/go:reference)
 return
 local:queryUniprot($uniprot_id/text())
 }
 </result>
}
</terms>

Figure 0-19. Recursive XQuery to aggregate proteins associated with a GO term or any of its
children. The result gets enriched with Uniprot and PDB data.

16 Chapter 0

Obtain additional information for proteins
For all proteins identified, the UniProt database is queried selecting data

sets for a specific UniProt identifier (see Fig. 0-20). Additional information
from the PDB is retrieved as shown in Fig. 0-21.

declare function local:queryUniprot($uniprotID)
{
 let $url := concat(concat("http://www.ebi.uniprot.org/entry/",

$uniprotID), "?format=xml&ascii")
 for $entry in doc($url)//uniprot:entry
 let $sequence:= $entry/uniprot:sequence
 return
 <protein uniprot_id="{$uniprotID}">
 {
 for $name in $entry/uniprot:protein//uniprot:name
 return
 <name>{$name/text()}</name>
 }
 <sequence_length>{$sequence/@length}</sequence_length>
 <sequence_mass>{$sequence/@mass}</sequence_mass>
 <sequence>{ $sequence/text() }</sequence>
 {
 For $pdbID in $entry//uniprot:dbReference[@type="PDB"]/@id
 return
 local:queryPDB($pdbID)
 }
 </protein>
};

Figure 0-22. Querying the Uniprot database with XQuery for information on the names,
sequence, sequence length, sequence mass and structures of a protein

0. QUERYING SEMANTIC WEB CONTENTS 17

declare function local:queryPDB($pdbID)
{
 let $url := concat("http://www.rcsb.org/pdb/downloadFile.do?

fileFormat=xml&compression=NO&struc
tureId=",$pdbID)

 for $item in
doc($url)/PDBx:datablock/PDBx:cellCategory/PDBx:cell

 return
 <pdb_structure pdb_id="{$pdbID}">
 <length_a>{$item/PDBx:length_a/text()}</length_a>
 <length_b>{$item/PDBx:length_b/text()}</length_b>
 <length_c>{$item/PDBx:length_c/text()}</length_c>
 </pdb_structure>
};

Figure 0-23. Querying the PDB database with XQuery.

3.3 Xcerpt

Xcerpt [7] is a declarative rule based query- and transformation language
for semi-structured data in general and for RDF and XML in particular.
Xcerpt does not natively query relational data bases, but relies on the XML,
RDF or OWL serializations of the Gene Ontology and the Protein Databank.
These serializations in general being graph structured and highly
heterogeneous, Xcerpt provides a comfortable way to query possibly
incomplete subpatterns of the data.

Xcerpt builds upon simulation unification and rule chaining for program
evaluation. Xcerpt uses three kinds of terms to carry out its computations:
data terms, query terms and construct terms. Data terms are semi-structured
data serving as an abstraction from various tree- and graph shaped data-
formats such as RDF and XML. Dataterms can be used to represent any kind
of semi-structured data, while still taking care of XML specificities such as
attributes, namespaces and references.

Query terms are data terms augmented by logical variables and enriched
by constructs that allow the specification of various forms of
incompleteness, which are used to match highly heterogeneous data.
Incompleteness specifications include incompleteness in depth (the
descendant construct and arbitrary length traversal path expressions),
incompleteness in breadth (there may be more subterms in the queried data
than which are specified by the query term) and optional subterms. Query
terms are matched with data terms via simulation unification to produce
\emph{substitution sets} (sets of sets of variable bindings). Substitution sets

18 Chapter 0

are then applied to construct terms by filling in the bindings for variable
occurrences.

The Workflow solved with Xcerpt
In order to select all proteins produced by a certain term referenced in the

Gene Ontology, the following Xcerpt rules could be used. Since we are not
only interested in the proteins produced by exactly the term provided by the
user, but also in those proteins which are produced by processes which are
subterms of the given term, and in additional information obtained from
UniProt, PDB and PubMed, the task is split into several parts:

Extracting subterm relationships from the Gene Ontology Database
In a first step (realized by Fig. 0-24), the direct subterm relationships are

extracted from the database. They are retrieved from the is_a elements
given in the Gene Ontology. In the special attributes-element the form
of the rdf:resource-attribute of the is_a-element is specified,
demanding that it ends with a GO-Term identifier. Note that since Xcerpt
programs are evaluated in a backward chaining manner, the binding of the
logical variable Term2 is passed on from the second and third rule below.
Curly braces in the query term indicate that the order in which the siblings
occur within the data is not important. This concept is called Incompleteness
with respect to order.

Double curly braces are used to allow also further siblings in the data
besides those explicitly specified - this concept is known as incompleteness
in breadth in Xcerpt. Xcerpt's desc construct matches with descendants of
the enclosing term that exhibit the specified pattern (incompleteness in
depth). Since there is no enclosing element for the go:term element in the
query term, it matches with all data nodes that have at least a
go:accession and a go:is_a sub-element (of the specified form).

0. QUERYING SEMANTIC WEB CONTENTS 19

Figure 0-27. Computing the transitive closure of the subterm-relationship with an Xcerpt rule.

CONSTRUCT
 subterm { var Term1, var Term2 }
FROM
 in {
 resource {
 "http://archive.godatabase.org/full/2006-05-01/
 go_200605-assocdb.rdf-xml.gz" },
 desc go:term {{
 go:accession { var Term1 },
 go:is_a{{
 attributes{{
 rdf:resource {
 "http://www.geneontology.org/go#"++var Term2
 }
 }}
 }}
 }
END

Figure 0-25. Extracting subterm relationships from the Gene Ontology.

Computing the transitive closure of the subterm relationship
In a second rule (given in Fig. 0-26), the transitive closure of the subterm

relationship is computed. Since all direct subterms are considered as
transitive subterms, the second disjunct of the body of this second rule
matches with the head of the first rule.

CONSTRUCT
 transitive_subterm { var Term1, var Term3 }
FROM
 or {
 and {
 subterm { var Term1, var Term2 },
 transitive_subterm { var Term2, var Term3 }
 },
 subterm { var Term1, var Term3 }
 }
END

20 Chapter 0

Finding all the proteins associated with a term of the Gene Ontology
In the third rule (see Fig. 0-28) for each of the subterms of the given term

PROTEIN

tim

Term, the associated proteins are looked up in the GOA database and
rendered as a list of links to their Uniprot entries in an HTML file. The
binding for the variable Term is provided by the user as a command line
parameter (e.g. xcerpt -D Term=GO:0051260, where GO:0051260
is the identifier of protein homooligomerization).

The first conjunct of the body of this rule matches with the second rule
above and passes the Term-variable on to the head of the second rule. In this
way, all of its subterms are bound to the variable SubTerm.

The second conjunct of the rule looks up all associated proteins for the
subterm, which have a Gene Ontology database symbol of type UNIPROT.
Each of these proteins is bound to the variable .

Note that also the second conjunct of the query term may match multiple
es with the database for a single binding of the variable SubTerm, thus

producing a set of pairs of variable bindings in which SubTerm is always
bound to the same variable given in the query, and Protein is bound once
for each protein produced by the given concept.

In the construct part of the rule (framed by the keywords GOAL and
FROM) the proteins are grouped by the subterms which they are associated
with in the Gene Ontology. This is achieved by the grouping construct all.
The string-concatenation function “++”' is used to construct the URL
pointing at the Uniprot entry. The construct term is a template of the HTML
page rendered by the browser to form part of the user-interface.

0. QUERYING SEMANTIC WEB CONTENTS 21

GOAL
 html [
 head [title ["Proteins produced by" ++ var Term]],
 body [
 all span [
 h3 ["Proteins produced by the subterm " ++ var SubTerm],
 ul [
 all li [
 attributes{ href {
 "http://www.ebi.uniprot.org/entry/" ++ var Protein ++
 "?format=xml&ascii" } },
 var Protein]
]
]
]]
FROM
 and {
 transitive_subterm { var SubTerm, var Term },
 in {
 resource {
 "http://archive.godatabase.org/full/2006-05-01/
 go_200605-assocdb.rdf-xml.gz" },
 desc go:term{{
 go:accession{ var SubTerm },
 go:association{{
 go:gene_product{{
 desc go:database_symbol{ "UNIPROT" },
 desc go:reference{ var Protein }
 }}
 }}
 }}
 }
 }
END

Figure 0-29. Constructing an HTML list of proteins for a GO term.

Extracting relevant information about Proteins from the Uniprot

and PDB Files
Xcerpt's patterns are well-suited to extract the name, length, mass and the

sequence of amino acids for a given protein from the UniProt database and
to reassemble them within an HTML fragment as specified in Fig. 0-30. The
second conjunct of the same rule is used to additionally extract information
from the PDB database about the physical dimensions of the crystals of the
Protein and PubMed identifiers of research papers dealing with the given
protein. This data is to be combined with the information from UniProt. Note
that the PDB_ID is extracted from the UniProt database, which means that
the first conjunct is evaluated before the second one. The rule could be
called via a system call from within a CGI script. Many of the PDB files

22 Chapter 0

about proteins additionally supply PubMed identifiers of research articles
treating the protein, but this is not mandatory. Xcerpt's optional-
construct allows to select optional data that does not have to be present for
the query to succeed. Since their may be multiple references to PubMed
identifiers, these references are wrapped into an unordered HTML list using
the grouping construct all. These references could be easily encoded as
hyperlinks in a similar way as in Fig. 0-31, which has been omitted for
brevity.

0. QUERYING SEMANTIC WEB CONTENTS 23

CONSTRUCT
 div [
 h3 ['Information about protein', span[var Protein]],
 p ["Name: " ++ var Name],
 p ["Length: " ++ var Length],
 p ["Mass: " ++ var Mass],
 p ["Sequence: " ++ var Sequence],
 p ["length_a: " ++ var LengthA],
 p ["length_b: " ++ var LengthB],
 p ["length_c: " ++ var LengthC],
 optional p ['PubMed References', ul [all li[var PubMedID

]]]
]
FROM
 and {
 in {
 resource {
 "http://www.ebi.uniprot.org/entry/" ++ var SubTerm ++
 "?format=xml&ascii" },
 entry {{
 protein {{ name {{ var Name }} }},
 sequence {{
 attributes {{ length { var Length }, mass { var Mass } }},
 var Sequence
 }}
 dbReference { attributes {{
 type { "pdb accesion" },
 value { var PDB_ID }
 }} }
 }}
 },
 in {
 resource {
 "http://www.rcsb.org/pdb/downloadFile.do?fileFormat=xml&
 compression=NO&structureId=" ++ var PDB_ID },
 PDBx:datablock {{
 desc PDBx:cell {{
 PDBx:length_a{{ var LengthA }},
 PDBx:length_b{{ var LengthB }},
 PDBx:length_c{{ var LengthC }}
 }},
 optional PDBx:pdbx_database_id_PubMed { var PubMedID }
 }
 }
END

Figure 0-32. Combining information from the PDB and the UniProt database for the same
Protein.

Retrieving the PubMed Abstract and Title
The final step in the workflow of the Protein Browser consists of

retrieving the PubMed abstract and title for a given PubMed identifier
retrieved by the rule in Fig. 0-33. The PubMed identifiers may either be
queried directly from the PDB file of a given protein or they may originate

24 Chapter 0

from the results of the previous rule. In Fig. 0-34 the second alternative is
presented.

CONSTRUCT
 html [head [title ['Articles for Protein' ++ var Protein]],
 body [
 all p [h3 [var Title], div [var Abstract]]
]
]
FROM
 and (
 div [[h3 [[span [var Protein]]],
 p [[ul [[li [var PubMedId]]]]]
]],
 in {
 resource{

'http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&ret
mode=xml&rettype=full&id=' ++ var PubMedId },

 PubMedArticle {{
 desc AbstractText { var Abstract },
 desc ArticleTitle { var Title }
 }}
 }
END

Figure 0-35. Retrieval of Abstract and Titles of PubMed entries.

The given rule finds all PubMed identifiers from the previously created

HTML fragment, retrieves the PubMed documents for these articles and
assembles a new HTML page containing a list of article titles and abstracts.

4. COMPARISON

In the following, we compare the three approaches according to several
criteria. Some criteria are subjective, for example how easy or difficult it is
to learn and use the approach. Other criteria are of a pragmatic nature and
relate to the availability of supporting tools like editors and debuggers. From
a technical point of view, it is also important to evaluate the scalability,
modularity, and extensibility of an approach.

0. QUERYING SEMANTIC WEB CONTENTS 25

earning curve
sic understanding of both Prolog and Java. This might

ma

ing paradigms like FOR loops or IF-
TH

sform any XML application, thus
als

latform independence
 such is platform-independent.

ble as libraries
wr

vailability
NU Lesser General Public License (LGPL) open source

pro

 RQL are available within commercial products or for
fre

s
NU General

Pu

ool support
 of its relative youth, has almost no support for editing or

debugging tools.

L
Prova requires ba
ke it more complicated to understand than Java or Prolog separately. The

Prova syntax integrates aspects from both paradigms in a very elegant way.
If one assumes basic knowledge in both Java and Prolog, Prova is then a
good way to profit from both worlds.

XQuery adapts standard programm
EN-ELSE statements and uses XPath to address nodes in the Document

Object Model (DOM) tree. Nevertheless the syntax and especially the usage
of functions requires some time to learn.

Xcerpt can be used to query and tran
o XML serializations of RDF and Topic Maps. Therefore it is very well-

suited for data integration. Being a very declarative pattern- and rule-based
language, potential errors are kept to a minimum and authoring queries in
Xcerpt is straightforward. Xcerpt is especially easy to learn for users with
experience in logic programming or with pattern based query languages such
as Query By Example or to a certain extent XPath.

P
Prova is Java-based and as
XQuery and XPath standard implementations are availa

itten in Java (http://saxon.sourceforge.net/) and can be used from any
platform which supports Java. Additionally many database systems come
with XPath or XQuery build in. Xcerpt is currently implemented in Haskell
and compiled with the Glasgow Haskell Compiler, which is available for
Linux, Solaris, Windows, FreeBSD and MacOS X. Thus Xcerpt can be
used on any of these platforms. Future versions of Xcerpt will be written in
Java to further increase platform independence.

A
Prova is a G
ject and thus can be used in any context, it can be freely downloaded

from www.prova.ws.
XQuery, XPath and

e under the Berkeley Software Distribution (BSD) license.
Xcerpt is current at a prototype stage of development and i
available at www.xcerpt.org under the terms of the G

blic License.

T
Prova, because

26 Chapter 0

mended to use specialized editors for XQuery. There exist
ma

ed graphical interface, running on
top

a is arguably at most as scalable as Java and its libraries. Java is
itse ture language in terms of performance. Starting with version
1.3

ds to prepare the 300 MB large Gene Ontology
RD

unts of XML data. With 512 megabytes of
ran

rova inherits the modularity of Java. XQuery allows for user-defined
fun an be used to modularize the code and improve its
ma

rova is based on Java and can construct Java objects and call any of
the erpt being available under an open source license, it can be
eas

XPath is simple enough to be written with a plain text editor. However it
is strongly recom

ture tools for several software platforms which come with editing support,
validation and debugging functionalities.

Xcerpt is accompanied by a visual query authoring and execution tool
called visXcerpt. It features a web-bas

 of a web server such as the Apache HTTP server
(http://www.apache.org/) and allows to dynamically browse both
XML data and the Xcerpt rules. Support for debugging and code completion
in Xcerpt is not available yet.

Scalability
Prov
lf a very ma
, the Java Virtual Machine has been based on HotSpot, a technology that

allows dynamic compilation of performance bottlenecks at execution time.
For this reason Java itself cannot be thought as an interpreted language. So
even though the rule engine behind Prova is essentially interpreted, all the
heavy duty work can be delegated to Java classes and one can thus expect
near-compiled performance.

On a machine powered by a Intel Xeon 3GHz, Saxon's XQuery engine
needs approximately 50 secon

F file for XQuery execution.
Xcerpt programs are currently being evaluated in memory. Thus it is not

yet possible to process large amo
dom access memory, an XML file of a size at most 40 megabytes can be

effectively processed. Research geared toward more efficient
implementations is being carried out.

Modularity
P
ctions that c
intainability. Xcerpt is being developed with a module system.

Extensibility
P
ir methods. Xc
ily extended and adapted to ones own needs.

0. QUERYING SEMANTIC WEB CONTENTS 27

5. DISCUSSION AND CONCLUSION

In this article we have shown how the combination and integration of
biological data from different resources on the Web may be realized with
different technologies. XML is a suitable way for sharing and exchanging
data across different systems interconnected over the Internet. XML query
languages are an accepted means for extracting relevant information and for
processing and transforming XML data.

XML and best practices.
Biological data is often stored in relational database engines and must be

serialized before it can be processed by XML query languages. Additionally,
huge amounts of biological data are already available and transferring entire
databases over the network takes a significant amount of time. As a result,
XML queries should be processed close to the data they operate on as far as
possible, taking advantage of relational database indexes. Several
commercial database products already support the local execution of XQuery
programs. To minimize transfer and processing time, only the results of
locally executed queries should be transferred over the network as XML. In
many cases, however, queries cannot be executed locally in their entirety,
because joins over entries located at different sites are necessary.

As can be seen in the exemplary workflow described previously, several

transformations of XML data may be stringed together to achieve complex
restructuring tasks. In such cases it is advisable to minimize intermediate
serializations of XML data independently of the query language being used.
In other words embedding several Xcerpt, XQuery or XSLT programs taking
XML as input and producing XML as output in a host language is inefficient
when compared to joining these programs to a single one, because
processing time is lost for parsing and serializing XML data.

The advantages of using XML query languages for data integration

versus the direct usage of relational databases increase with the amount of
different data sources that must be integrated and with the degree of
heterogeneity of the encountered data. The more heterogeneous the data, the
harder it is to fit it into a relational database schema. Moreover, XML query
languages (especially Xcerpt) provide a rich set of language constructs to
deal with various kinds of heterogeneity of the data, which means that
several SQL queries operating on a relational database can be combined to
form a single Xcerpt query on XML data.

28 Chapter 0

In picking the right XML technology for a bioinformatics project,
maturity of the language is an important issue. Xcerpt being a research
prototype, is currently not recommended for use in large projects. On the
other hand XQuery is a W3C recommendation and several robust
implementations are already available.

Beyond XML ?
It is not yet clear if XML will eventually become the universal format for
data exchange. Relational databases, flat files, and other idiosyncratic

formats might subsist and limit, in practice, the applicability of pure XML
query languages. We have shown how practical Prova is for assembling
workflows involving heterogeneous sources of data. Prova is also able to
delegate XML processing tasks to XQuery which has itself a Java
implementation based on the Saxon library (http://saxon.sourceforge.net/).
Xcerpt will also be eventually reimplemented in Java, and thus it will also be
possible in the future to run Xcerpt queries from a Prova program. It can be
argued that the need for a generic and possibly declarative programming
language will remain. Simply because from a pragmatic point of view, there
will always be some tasks that will be simply too cumbersome to deal with
any specialized languages. A user should always be able to fall-back to a
standard programming approach.

Conclusion
In all cases, it is clear that independently of the technologies used, the

trend is toward remote querying of data. Maintaining and synchronizing
local databases is cumbersome and should not be necessary. As we have
seen, several databases like UniProt, PDB and PubMed offer their data
through URL links in XML format. Prova, Xquery/Xpath and Xcerpt are
ready to process them.

Acknowledgements: We acknowledge the financial support of the EU

projects Sealife (FP6-IST-027269) and REWERSE (FP6-IST-506779).

[1] The Gene Ontology (GO) project in 2006.Nucleic Acids Research, 34(Database
issue):D322–6, 12 2005.

[2] BairochA, ApweilerR,WuCH, BarkerWC, BoeckmannB, FerroS, GasteigerE,

HuangH, LopezR, MagraneM, MartinMJ, NataleDA, O’DonovanC, Redaschi N,
andYeh LS. The Universal Protein Resource(UniProt). Nucleic Acids Res.,
33:D154–159, 2005.

[3] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

0. QUERYING SEMANTIC WEB CONTENTS 29

I. N. Shindyalov, andP. E. Bourne. The protein data bank. Nucleic Acids Res,

28(1):235–242, 2000.

[4] WheelerDL,ChappeyC,LashAE,LeipeDD, MaddenTL, SchulerGD,Tatusova TA,

andRappBA. Database resourcesof the National Center for Biotechnology
Information. Nucleic Acids Res., 28:10–4, 2000.

[5] AlexanderKozlenkovand Michael Schroeder.PROVA: Rule-basedJava-Scripting

for a Bioinformatics Semantic Web. In E. Rahm, editor, International Workshop
on Data Integration in the Life Sciences DILS, Leipzig, Germany, 2004.
Springer.

[6] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova.Entrez Gene:

gene-centered information at NCBI. Nucleic Acids Res, 33(Database issue):D54–
D58, 2005.

 [7] Sebastian Schaffert and Franc¸ois Bry. Querying the Web Reconsidered: APrac-

tical Introduction to Xcerpt. In Proceedings of Extreme Markup Languages 2004,
Montreal, Quebec, Canada (2nd–6thAugust 2004), 2004.

	1. INTRODUCTION
	2. DATA INTEGRATION IN BIOINFORMATICS
	3. CASE STUDY: PROTEINBROWSER
	3.1 Prova
	3.2 XQuery and XPath
	3.3 Xcerpt
	4. COMPARISON
	5. DISCUSSION AND CONCLUSION

