1 Querying Bio-Ontologies using Xcerpt

In this section, we show a number of ideas for using the Web query language Xcerpt
for querying terms and their relations defined in the GeneOntology. Xcerpt is a novel
versatile Web query language that provides ample support for querying Web data het-
erogeneous in structuring and even with regard to representation format used. Xcerpt
supports querying of both XML and RDF data, as well as intertwined access to data in
these formats.

Xcerpt, a versatile Web query language. Xcerpt[9, 8, 15, 2], cfhttp://xcerpt.

org , is a query language designed after principles given in [7] for querying both data
on the “standard Web” (e.g., XML and HTML data) and data on the Semantic Web
(e.g., RDF, Topic Maps, etc. data).

Xcerpt is “data versatile”, i.e. a same Xcerpt query can access and generate, as an-
swers, data in different Web formats. Xcerpt is “strongly answer-closed”, i.e. it not only
gives rise to construct answers in the same data formats as the data queries like, e.g.,
XQuery [10], but also to further processing in a query program data generated by this
same query program. Xcerpt's queries are pattern-based and give rise to incompletely
specify the data to retrieve by (1) not explicitly specifying all children of an element,
(2) specifying descendant elements at indefinite depths (restrictions in the form of reg-
ular path expressions being possible), and (3) specifying optional query parts. Xcerpt's
evaluation of incomplete queries is based on a novel form algorithm called “simulation
unification” [6]. Xcerpt's processing of XML documents is graph-oriented, i.e., Xcerpt
is aware of the reference mechanisms (e.g., ID/IDREF attributes and links) of XML.
Xcerpt is rule-based. An Xcerpt rule expresses how data queried can be re-assembled
into new data items, i.e., an Xcerpt rule corresponds to an SQL view. Xcerpt allows
both traversal of cyclic documents and recursive rules, termination being ensured by
so-called memo-ing, or tabling, techniques. Xcerpt rules can be chained forward or
backward, backward chaining being on the Web the processing of choice. Indeed, if
rules can, like Xcerpt’s rules, query any Web site, then a forward processing of rule-
based programs could require to start a program’s evaluation at all Web sites. Xcerpt
is inspired from Logic Programming. However, since it does not offer backtracking as
programming concept, Xcerpt can also be seen “set-oriented functional”.

Three features of Xcerpt are particularly convenient for querying not only XML
but also RDF data. (1) Xcerpt's pattern-based incomplete queries are convenient to
collect related resources in the neighborhood of some resources and to express traver-
sals of RDF graphs of indefinite lengths. (2) Xcerpt chaining of (possibly recursive
rules) are convenient to express RDFS’s semantics, e.g., the transitive closure of the
subClassOf relation, as well as all kinds of graph traversals. (3) Xcerpt's optional
construct is convenient for collecting properties of resources.

GeneOntology in XML and RDF. For the GeneOntology (at least) two different

XML serializations formats and one (unofficial) RDF version are available. The more
widespread XML format (referred to in the rest of this paper as GO/XML) actually uses
RDF identifiers (URI's and attributes from the RDF namespace) for identifying and

-

referring to terms as the ID/IDREF link mechanism provided in basic XML has been
deemed insufficient. This XML format is essentially compatible with RDF/XML [1],
the standard serialization of RDF in XML, but extends this format slightly. The second
XML format is based upon the OBO syntax for flat files. It differs from GO/XML

by using different (non-RDF) identifiers, no use of namespaces, and a slightly simpler
structure as it is not based on RDF/XML. A non-official format of the GeneOntology
in standard (non extended) RDF is also available. The main difference to GO/XML
is the use ofdfs:subClassOf instead ofgo:is _a to represent the subsumption
hierarchy among terms and a proper RDF representation of complex information such
as database cross-references. This makes processing of this information using standard
RDF tools easier.

Two views on the GeneOntology: Graphs and Triples. Instead of implementing

the sample queries from Section [WHERE THE QUERIES ARE DISCUSSED] on
each of these different serialization formats, we propose in the following to define two
more abstract views over these concrete serializations using Xcerpt rules:

The first view allows to see the terms and their relations in the GeneOntology as
(flat) RDFtriples. This is similar to the view most RDF query languages such as the
W3C'’s SPARQL [13] provide on the RDF version of the GeneOntology.

[SAMPLE DATA IN SOME RDF TRIPLE SYNTAX, E.G. N3]

Listing 1: RDF Triples for an Excerpt of the GeneOntology (using N3 [3] notation for
RDF triples)

:GO0007264 rdf:type go:term.

:GO0007264 go:name "small GTPase mediated signal transductian”
:GO0007264 rdfs:subClassOf :GO0007242.

:GO0016601 rdf:type go:term.

:G0O0016601 Go:name "RAC protein signal transduction”

:G00016601 rdfs:subClassOf :GO0007264.

:GO0007265 rdf:type go:term.

:GO0007265 go:name "RAS protein signal transduction”

:GO0007265 rdfs:subClassOf :GO0007264.

The second view allows to view the ontology directly agraph of terms and
relations among the terms. This graph view of the GeneOntology is close to the graph
view of RDF in Xcerpt as described in [4]: XML and therefore Xcerpt are limited
to node-labeled graphs only. The GeneOntology, on the other hand, (just like RDF
and other ontology languages) uses a graph model where both nodes (i.e., terms in the
ontology) and edges (i.e., relations among the terms) are labeled. To represent such a
graph in Xcerpt, labeled edges are represented by labeled nodes with (unlabeled) edges
to the source and sink of the original edge. E.g., to expressdisiands in part-of
relation toY, there is a part-of subelement f&rthat contains’ as subelement. This
leads to a graph where the children of nodes for terms are nodes for relations and vice
versa. Hence, such a representation is often referreddipsg.

[IF YOU HAVE A GRAPH OF SOME SAMPLE DATA OF THE GO, | THINK A
PICTURE SHOWING THE STRIPING WOULD BE GREAT HERE]

In the following queries, the Xcerpt compact syntax is used. For a comprehensive
description of Xcerpt's compact and XML syntax see [16, 14].

-

&

11

13

15

17

19

21

23

[IF WE HAVE THE SPACE | WOULD LIKE TO SHOW THE SAMPLE DATA
IN XML AND AS AN XCERPT DATA TERMS]

View definitions in Xcerpt. The following rule shows how such a graph view can be
generated from the GO/XML representation of the GeneOntology:

Listing 2: Graph View on GO/XML

ns-prefix go="http ://ww. geneontology.org/dtds/go. dtd#”
ns-prefix rdf= "http ://www.w3.0rg/1999/02/22 rdf—syntax—ns#”

CONSTRUCT
terms {
all var TermAlID@term {
id { var TermAID },
all var Property,
optional all var Relation {
“var TermBID
}
P}

FROM
go:go {{
var TermA — desc go:iterm {{
attributes {{ rdf:about { var TermAID } }},
var Property — var Label {{
without attributes { rdf: resource { } }}

1
optional var Relation {
attributes {{ rdf: resource { var TermBID } }}

}
BB
END

An excerpt rule is used, where in the query term (betweerF(R®M and END
keywords)go:term elements are matched and bound to the varidiglenA. The
desckeyword specifies that these elements may occur at any depth under the root
of the XML document with labedo:go . The query also collects the value of their
rdf:about attribute (i.e., the ID of the term), all their properties (i.e., sub-elements
without rdf:resource attribute), and their relations to other terms. Such relations
are expressed in GO/XML using sub-elements (labeled,gods _aorgo:part _of)
with ardf:resource attribute pointing to the related term. The double curly brack-
ets in the query indicate (1) that we do not care about the order among the specified
elements and (2) that the query specification is incomplete, e.g., there might be addi-
tional sub-elements of thgo:go document element. Theptional keyword in line
20 indicates that this part of the query is optional, i.e., a term is also matched, if it has
no relations.

In the construct term (betwed®ONSTRUCT andFROM) the shape of the data
constructed by the rule is specified: under the teans for each binding offermA
(i.e., for each term in the GeneOntologyeam element with the proper ID is created
an all its properties are copied from the input data. The crucial part of the construct
term are lines 9-11: here for each relation a sub-element labeled as in the input is
created. This element in turn has as sub-element the related term. Instead of coping
that term a reference to the term is used indicated by tbperator. Such references
are defined in line 5 using the operator.

1

11

13

15

17

19

21

23

25

27

29

N

8

10

A triple view of the GeneOntology can be obtained from the RDF serialization
format by using the library for accessing RDF data proposed in [4].

The following view shows how to define the above graph view on such an RDF
triple view!.

Listing 3: Graph View on GO/RDF (same namespace declarations as above)

CONSTRUCT
terms {
all var TermlD@term {
id { var TermID },
all var Property { var Value },
optional all go:part_of {
“var PartOfTermID

optional all go:is_a {
“var IsATermID
}
}

}
FROM
and {
RDF-TRIPLE [
var TermID:urif}, "rdf:type”:urif}, "go:term”uri}
I8
RDF-TRIPLE [
var TermiD:urif}, var Property:urif}, literal { var Value }

It
optional RDF-TRIPLE [
var TermID:uri{}, "go: part—of”:urif}, var PartOfTermID:uri{}
It
optional RDF-TRIPLE [
var TermID:uri{}, "rdfs:subClassOf!urif}, var IsATermID:uri{}

]
}
END

In essence, the query collects the URIs of all terms in the variBé&dmAID (see
lines 2—4 in theFROM clause). More precisely, URIs for all instancesgofterm
are collected where instances are expressed using the standard RDF instance relation
rdf:type . For each such term, all properties and the URIs of all terms it is part or
subclass of are collected. Again, there might be no part or subclass relations, therefore
the optional keyword is used for these conjuncts. The construction is analogous to the
case above.

Sample queries in Xcerpt. Query 1 from Section [SECTION WITH QUERIES] can
be expressed in Xcerpt as follows:

GOAL
result {
all term-id{
var TermID

}

}
FROM
terms {{
term {{
id { var TermID },
go:name { “"small GTPase mediated signal transduction”

1For simplicity, dbxref's that are represented as blank nodes in RDF are not handled.

12

14

-

11

13

15

-

B

B
END

In this query we operate on the graph view defined above and query the IDs of
all terms with the requestegb:name property (there should be only one, of course).

In the FROM clause such IDs are bound to the variabkrmID using incomplete
matching in breadth for both therms andterm element as both may (and do) have
additional sub-elements not specified here.

In the GOAL clause a construct term specifying the shape of the final result of the
program is given: Using thall grouping keyword the IDs of all matched terms are
collected, each nested inside its otenm-id element.

This query can be as easily expressed on the triple view:

GOAL
result {
all term-id{
var TermID

}

}
FROM
and{
RDF-TRIPLE [
var TermlID:uri{}, "rdf:type"urif}, "go:term”urif}

1
RDF-TRIPLE [
var TermlID:uri{}, "go :name™uri{}, literal{ "small GTPase mediated signal ...
...transduction”}
1

}
END

A conjunctions of triples is used to find the IDs of terms that fulfill all properties
asked for. Such conjunctions of triples are used often in RDF query languages, e.g., in
RDQL [17], SeRQL [5], RQL [11, 12] or the W3C’s SPARQL [13]. In SPARQL this
query can be expressed as follows:

SELECT ?Termld
WHERE (?TermID, <rdfitype>, <go:term>),

(?TermID, <go:name>, "small GTPase mediated signal transductign”
USING go FOR http://139.91.183.30:9090/RDF/VRP/Examples/schema_go.rdf#,

rdf FOR http://www.w3.0rg/1999/02/22-rdf-syntax-ns#

Query 2, however, is not as easily expressed on such a triple view as it requires
recursive traversal of thadfs:subClassOf /go:is _a relation. In fact, none of
the above mentioned RDF query languages supports recursive traversal of arbitrary
relations and only RQL has specific language constructs for recursive traversal of
rdfs:subClassOf (as that relation is part of the RDFS standard). In Xcerpt, this
query can be expressed very handily on the graph view as follows:

GOAL
result {
all term-id{
var TermID

}
}
FROM
terms {
term {

10

12

14

16

-

11

13

10

12

14

16

18

N

id { var TermID },
desc (go:is_alterm)* term {

go:name { "small GTPase mediated signal transduction”
}

}

}
END

Here the Xcerpt's “qualified descendant” construct is used in line 8: all terms are se-
lected that have a term with the requested name as descendant. However, between the
descendant and the selected term @uyis _a andterm elements may occur. This
ensures that the term is not actually related bygbgart _of relation.

On the triple view the query can be expressed as well but requires recursive rules
(as in the Prolog and Prova case). Fkdfs:subClassOf the required rules are
contained in the RDFS entailment library developed in [4] (slightly simplified here):

CONSTRUCT
RDFS-TRIPLE[
var CLASS, "http ://ww.w3.0rg/2000/01/rdf schema#subClassOfuri{}, var
...SUPERCLASS

]
FROM
and[
RDF-TRIPLE][
var CLASS, "http ://www.w3.0rg/2000/01/rdfschema#subClassOfirif}, var X

1,
RDFS-TRIPLE[
var X, "http ://www.w3.0rg/2000/01/rdf schema#subClassOfuri{}, var
...SUPERCLASS
]

]
END

On this RDFS “view” query 2 can than be easily expressed as follows:

GOAL
result {
all term-id{
var TermID

}

}
FROM
and{
RDF-TRIPLE [
var TermID:uri{}, "rdf:typeurif}, "go:term”urif}

RDFS-TRIPLE [
var TermID:uri{}, "rdfs:subClassOf!urif}, var Xuri{}

I
RDF-TRIPLE [
var X:urif}, "go :name™urif}, literal{ "small GTPase mediated signal ...
...transduction”}
]

}
END

Query 3 can be expressed on the graph view as straightforward extension of the
previous query:

GOAL
result {
all term-id{
var TermID

6

8

10

16

18

20

22

10

12

14

16

18

20

24

26

}

}
FROM
terms {
term {
id { var TermID },
and {
desc (go:is_alterm)* term {
go:name { "small GTPase mediated signal transduction”
not {
desc (go:is_alterm)* term {
go:name { "Rho protein signal transduction?}
}
}
}
}
}
END

Notice the use of thand keyword to express a conjunction inside of a term. This
illustrates another important property of Xcerpt: in contrast to traditional logic pro-
gramming languages, formulae and terms are not separated, but rather formulae are
expressed as terms. In particular, Xcerpt does not distinguish between predicates and
terms.

On the triple view it can be expressed as

GOAL
result {
all term-id{
var TermID

}

}
FROM
and{
RDF-TRIPLE [
var TermID:uri{}, "rdf:type”:urif}, "go:term”urif}

RDFS-TRIPLE [
var TermID:uri{}, "rdfs :subClassOf!urif}, var Xurif}

RDF-TRIPLE [
var X:uri}, "go :name”uri{}, literal{ "small GTPase mediated signal ...
...transduction”}
1

not {
RDFS-TRIPLE [
var TermlID:uri{}, "rdfs :subClassOf!urif}, var Y:uri{}
1
RDF-TRIPLE [
var Y:uri{}, "go :name”urif}, literal{ "Rho protein signal ...
...transduction”}
]
}
}
END
References

[1] Dave BackettRDF/XML Syntax Specification (Revise?y3C, February 2004.

[2] Sacha Berger, Franois Bry, Oliver Bolzer, Tim Furche, Sebastian Schaffert, and
Christoph Wieser. Xcerpt and visXcerpt: Twin Query Languages for the Semantic
Web. InProc. Int. Semantic Web Conti1 2004. 14 13.

[3] Tim Berners-Lee. Notation 3, an RDF language for the Semantic Web. Online
only, 2004.

[4] Oliver Bolzer. Towards Data-Integration on the Semantic Web: Querying RDF
with Xcerpt. Diplomarbeit/Master thesis, University of Munich, 2 2005.

[5] Jeen Broekstra and Arjohn Kampman. SeRQL: A Second Generation RDF Query
Language. IrProc. SWAD-Europe Workshop on Semantic Web Storage and Re-
trieval, 2003.

[6] Francois Bry, Sebastian Schaffert, and Andreas @tdm A contribution to the
Semantics of Xcerpt, a Web Query and Transformation Languadg&otn Work-
shop Logische Programmieruniylarch 2004.

[7] Franois Bry, Tim Furche, Liviu Badea, Christoph Koch, Sebastian Schaffert, and
Sacha Berger. Querying the Web Reconsidered: Design Principles for Versatile
Web Query Languagesournal of Semantic Web and Information Systel(2),

2005. 14.

[8] Franois Bry and Sebastian Schaffert. A Gentle Introduction into Xcerpt, a Rule-
based Query and Transformation Language for XMLPtoc. Int. Workshop on
Rule Markup Languages for Business Rules on the Semantic20@d.

[9] Franois Bry and Sebastian Schaffert. The XML Query Language Xcerpt: De-
sign Principles, Examples, and Semantics.Ptoc. Int. Workshop on Web and
Databasesvolume 2593 of NCS Springer-Verlag, 2002.

[10] Don Chamberlin, Peter Fankhauser, Massimo Marchiori, and Jonathan Robie.
XML Query (XQuery) Requirementd/3C, 2003.

[11] Gregory Karvounarakis, Sophia Alexaki, Vassilis Christophides, Dimitris Plex-
ousakis, and Michel Scholl. RQL: A Declarative Query Language for RDF. In
Proc. International World Wide Web Conferenb#ay 2002.

[12] Gregory Karvounarakis, Aimilia Magkanaraki, Sophia Alexaki, Vassilis
Christophides, Dimitris Plexousakis, Michel Scholl, and Karsten Tolle. RQL:
A Functional Query Language for RDF. In Peter Gray, Peter King, and Alexan-
dra Poulovassilis, editor§he Functional Approach to Data Managemettiap-
ter 18, pages 435-465. Springer-Verlag, 2004.

[13] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
Working draft, W3C, 2 2005.

[14] Sebastian SchafferKcerpt: A Rule-Based Query and Transformation Language
for the Web Dissertation/Ph.D. thesis, University of Munich, 2004.

[15] Sebastian Schaffert and Francois Bry. Querying the Web Reconsidered: A Prac-
tical Introduction to Xcerpt. IfProc. Extreme Markup Languagesugust 2004.

[16] Sebastian Schaffert and Franois Bry. Querying the Web Reconsidered: A Practi-
cal Introduction to Xcerpt. IfProc. Extreme Markup Language®2004. 14.

[17] Andy Seaborne. RDQL — A Query Language for RDF. Online only, January
2004.

