
XcerptRDF: A Pattern-based Answer to the
Versatile Web Challenge

François Bry1, Tim Furche1, Benedikt Linse1, and Alexander Pohl1

Institute for Informatics, University of Munich,
Oettingenstraße 67, D-80538 München, Germany

http://www.pms.ifi.lmu.de/

Abstract. We propose XcerptRDF, an extension of the rule based XML
query language Xcerpt with language constructs explicitly geared at
comfortable querying RDF data, including convenient access to collec-
tions, containers, reified statements, and “concise bounded descriptions”
for blank nodes. Simulation unification, the formal basis for evaluating
Xcerpt queries, is extended to cover the new language constructs and thus
to give a formal semantics for XcerptRDF queries. In contrast to previous
integration approaches such as XSPARQL or GRDDL that combine an
XML query language such as XSLT or XQuery with an RDF query lan-
guage such as SPARQL, XcerptRDF requires the user to learn only a single
language: most language constructs are sufficiently generic to be applied
to both RDF and XML data. XcerptRDF is thus a possible solution to the
challenge of versatile data access on the Web which has emerged due to
the plethora of data formats already online.

1 Introduction

Previous approaches for integrating XML and RDF access fall roughly into two
categories: transformation and multi-language approaches. In the former, a pure
XML or a pure RDF query language is used and data in the respectively other
format can only be accessed by some encoding in the other one. In the latter, a
query language for one of the data formats is combined, most often embedded
into the other one (e.g., XSPARQL, GRDDL). The advantage of transformation
approaches is that users have to learn only a single language. However, this is
offset by the need to understand the encoding of RDF in XML or vice versa
and very limited support for specifics of the encoded data format that are not
present in the native format.

In this article, we take a novel approach to integrating XML and RDF query-
ing: We propose slight extensions to the pattern- and rule-based XML query lan-
guage Xcerpt that allow convenient querying of RDF and, in contrast to, e.g.,
SPARQL, address also the graph nature of RDF (cf. Section 5). A large core of
language features is shared by both the XML and the RDF version of Xcerpt.
Contributions. More precisely, the paper is organised along the following con-
tributions: (1) We underscore the need for pattern based access to RDF data,

http://www.pms.ifi.lmu.de/

in particular to RDF graphs including RDF containers, collections and reifica-
tion. (2) We propose (Section 3) the RDF query language XcerptRDF, which, by
making use of Xcerpt’s pattern based approach including the directives optional,
without, descendant is a straight-forward and intuitive extension of Xcerpt. Since
it relies on the same evaluation principles as Xcerpt, namely simulation, simula-
tion unification, substitution sets and rule chaining, it is easy to grasp for Xcerpt
programmers, and, to a slightly lesser extent to any person that has been in-
volved in logic programming. (3) In Section 4 we extend the notion of simulation
from general semi-structured data to RDF data with its intrinsic particularities,
thereby giving a formal semantics to the evaluation of XcerptRDF query terms.
(4) In Section 5 we address the necessity of support for graph properties in RDF
query languages brought up by [1]. We show that all queries described by [1] are
expressible in XcerptRDF.

2 Preliminaries

The Resource Description Framework (RDF) [2] is considered the foundation for
the Semantic Web by encoding information in simple triples of subject, predicate
and objects. RDF is a logic based language with a formal model theory [3] relying
on URIs to uniquely refer to concepts and real world objects, called resources in
RDF terminology.

Definition 1 (Basic RDF concepts). An RDF triple or statement consists
of a subject, predicate and object. The subject may either be a URI, i.e. a
global identifier or a blank node, i.e. an identifier whose scope is restricted to the
containing document. The predicate is always a URI identifying the relation that
holds between the subject and the object. The object may either be a URI, blank
node, or literal, i.e. a string that represents an atomic value such as number,
date, XML fragment, etc. An RDF graph is a set of RDF triples.

Xcerpt [4,5] is a declarative, rule- and pattern-based query language for semi-
structured data in general, and XML in particular. In contrast to XPath, Xcerpt
patterns, also called query terms, allow variables and n-ary queries over trees
and graphs. The semantics of query terms is specified in terms of simulation,
and Xcerpt terms are matched with data by an algorithm called simulation
unification [5].

3 XcerptRDF

In this section, the syntax of XcerptRDF is introduced. We first give a formal defi-
nition of XcerptRDF terms, then we intuitively explain the semantics of XcerptRDF

containers and collections, reified terms and variables one after another. For the
sake of brevity, we omit the query constructs optional, without and descendant,
the grouping construct all and square brackets, which have the same semantics
as in ordinary Xcerpt query terms. Moreover, we omit syntactic sugar for the

RDF/S predicates rdf:type, rdfs:domain and rdfs:range. The interested reader
is referred to the full specification of XcerptRDF [6].

Definition 2 (XcerptRDF basic notions). XcerptRDF terms, predicate-object
pairs, containers and collections are recursively defined as follows:

– if l is an identifier, then var l, termvar l, and cbdvar l is an XcerptRDF

label variable, term variable and concise bounded description variable, re-
spectively. Collectively they are referred to simply as XcerptRDF variables and,
for a term q, denoted by V ars(q).

– an XcerptRDF variable, an RDF blank node, URI or RDF literal is an XcerptRDF

term.
– if t1, . . . tn are XcerptRDF terms, then bagOf {{t1, . . . , tn}}, bagOf {t1, . . . , tn},

setOf {{t1, . . . , tn}}, setOf {t1, . . . , tn}, seqOf {{t1, . . . , tn}} and seqOf {t1, . . . ,
tn} are XcerptRDF containers.

– if t1, . . . tn are XcerptRDF terms, then listOf{{t1, . . . , tn}} and listOf{t1, . . . ,
tn} are XcerptRDF collections.

– if t is an XcerptRDF term, then < t > is an XcerptRDF reified term.
– if t is an RDF term and u is a URI, then u → t is an XcerptRDF predicate

object pair.
– if N is an RDF blank node or URI, and each ti in t1, . . . , tn is either an

XcerptRDF predicate object pair, an XcerptRDF container or collection, or a
reified term, then N{t1, . . . , tn} and N{{t1, . . . , tn}} are XcerptRDF terms.

V ars(t) (Child(t)) denotes the set of variables (children) of a term t.

An XcerptRDF term containing no variables and only single curly braces
is called an XcerptRDF data term. Each XcerptRDF data term can be uniquely
mapped to an RDF graph. An XcerptRDF term containing only single curly braces
is called an XcerptRDF construct term. Hence, every XcerptRDF data term is also
an XcerptRDF construct term. The notion of an XcerptRDF query term is the most
general one and coincides with the one of XcerptRDF terms. Query terms appear
in the body of XcerptRDF rules, while construct terms appear within their heads.

An RDF triple _:A eg:b ”c”, where _:A is a blank node, eg:b is a URI, and
”c” is an RDF literal, is represented in XcerptRDF as the term _:A{ eg:b→ ”c” }.
The arrow-syntax is chosen to convey the graph nature of RDF data. Literals,
blank nodes, and URIs are represented the same way as in other popular RDF
query languages such as SPARQL and RQL.1 Terms may be nested (e.g. eg:a{
eg:b→ eg:c{ eg:d→ eg:e } } or grouped by subject (e.g. eg:a{ eg:b→ eg:c,

eg:d→ eg:e }. 2.

1 URIs are commonly abbreviated using a namespace prefix. The prefix eg is assumed
to be bound to the namespace http://example.org in the following.

2 To further reduce the verbosity of the representation of RDF graphs as XcerptRDF

terms, also grouping by predicate, object, by subject and predicate, predicate and
object, and by subject and object is supported. For the sake of brevity we refer the
interested reader to [6]

http://example.org

Since RDF graphs may be unconnected or have multiple root nodes, they
generally cannot be represented by a single XcerptRDF term, but only by a con-
junction of XcerptRDF terms. We therefore informally introduce the notion of an
XcerptRDF graph, that covers all RDF graphs. The statements “anna knows bob”
and “chuck knows bob” are written in XcerptRDF using the FOAF3 vocabulary
and appropriate URIs as the following XcerptRDF graph:4

RDFGRAPH{ anna{ foaf:knows→ bob}, chuck{ foaf:knows→ bob} }

3.1 Representation and Querying of RDF Containers and
Collections

As in any other data description formalism, also in RDF there is a need for
describing not only single valued, atomic resources, but groups of resources or
complex, structured objects. This need is in conflict with one of the most basic
design principles of RDF, namely the one of encoding any information within
simple statements made up of atomic subjects, predicates and objects. RDF
solves this conflict by a canonical encoding of complex structures (such as sets
or lists) in RDF triples, at the cost of sacrificing their “intuitive” semantics:

Containers and Collections in RDF and XcerptRDF . RDF supplies a predefined
vocabulary for RDF Containers and Collections. An RDF container is either a
bag, sequence or a set, and is represented by a set of triples involving the pred-
icates rdf:_1, rdf:_2, rdf:_3, . . . , and the classes rdf:Bag, rdf:Seq or rdf:Set.
RDF sequences have the intuitive semantics of being ordered, RDF bags are un-
ordered and may contain the same element more than once, whereas RDF sets
are also unordered, but should not have duplicate elements. The RDF model the-
ory [3], however, does not enforce this semantics. Therefore, an RDF resource (i)
may be typed as an RDF bag and an RDF sequence at the same time, (ii) may
contain multiple statements involving the predicate rdf:_i for some integer i, or
(iii) may be typed as an RDF set, but include the same element more than once,
and there would be still valid RDF interpretations for the RDF graph containing
this resource.

In Xcerpt RDF we (1) provide convenient syntax for containers, collections,
etc. and (2) enforce the intuitive semantics of theses concepts. However, the user
can vote to disregard the specific constructs for these RDF constructs and still
represent RDF graphs violating their intuitive semantics in XcerptRDF by the
same triple encoding as in RDF.

A shopping cart with the entries eg:milk and eg:coffee represented by an
RDF bag is given by the following triples, and the equivalent short hand notation
in XcerptRDF:

3 urlwww.foaf-project.org/
4 The keyword RDFGRAPH serves to group several XcerptRDF terms in a graph. XcerptRDF

also supports named graphs; for details see [6].

eg:cart123 rdf:type rdf:Bag .

2 eg:cart123 rdf:_1 eg:milk .

eg:cart123 rdf:_1 eg:milk .

4 eg:cart123 rdf:_2 eg:coffee .

eg:cart123{ bagOf{

2 eg:milk , eg:milk ,

eg:coffee

4 } }

RDF sets and sequences are written in the same way with the keywords seqOf
and setOf. XcerptRDF not only provides shorthand notations for representing
RDF graphs including containers, but also for querying such graphs.

eg:cart123{ bagOf{{ var Item }} } is a query that binds each item in the
shopping cart to the variable Item. The query matches with the data above and
yields the bindings eg:milk, and eg:coffee. Substituting double curly braces by
single ones in the query would result in a query that only matches with RDF
bags containing a single item.

RDF Containers may only be used to state that some resource rm is member
of some other resource rc, but cannot be used to state that there are no other
members ro of rc.

In contrast, RDF collections are used to model data that is completely spec-
ified, i.e. closed, and are written as RDF statements involving the vocabulary
rdf:List, rdf:first and rdf:rest. The Xcerpt term in Listing 1.1 corresponds to
Fig. 16 of [7] and asserts that Amy, Mohamed and Johann are the only students
of the course 6.001.

Again, the RDF model theory does not enforce the intuitive semantics of
closedness of RDF collections. An RDF graph may contain a node that is subject
of multiple statements with the predicate rdf:first or rdf:rest, and a container
may also be unclosed. A model theory that formalizes the intuitive semantic
extensions brought to RDF by containers and collections has, to the best of our
knowledge, not yet been specified.

eg:courses /6.001 {

2 eg:students/vocab/#s t u d e n t s {
listOf [

4 eg:students/Amy ,

eg:students/Mohamed ,

6 eg:students/Johann] } }

Listing 1.1. Shorthand notation for RDF
lists in Xcerpt numbers

desc var List as

listOf [[

eg:students/

Mohamed

]]

Listing 1.2. Finding all
Lists with eg:Mohamed

In accordance with the intuitive semantics of RDF containers and collections,
XcerptRDF only allows one of the keywords bagOf, setOf, seqOf and listOf as a
child of a term. Moreover, if one of these keywords is used to describe a resource,
there must not be any other statements describing the same resource and in-
volving the vocabulary rdf:Bag, rdf:Set, rdf:Seq, rdf:List, rdf:_1, rdf:_2, etc.
Hence the term a{ bagOf{ b }, rdf:type→ c} is not a valid XcerptRDF term.
As a result of this convention, any RDF graph that can be represented as an
XcerptRDF term making use only of the syntactic sugar key words for representing
RDF containers and collections, is guaranteed to respect the intuitive semantics.
Nevertheless, there is still the possibility of representing arbitrary RDF graphs
by writing the RDF triples that make up a container or a collection directly as

an XcerptRDF term, thereby doing without the keywords. Listing 1.2 shows an
XcerptRDF query that matches with all RDF graphs containing an RDF list with
the entry eg:students/Mohamed.

3.2 Representation and Querying of Reified Triples

Reification is an RDF mechanism to encode information about statements,
in other words to make RDF meta statements. For this purpose, RDF pro-
vides a reification vocabulary consisting of the RDF predicates rdf:subject,
rdf:predicate and rdf:object and the RDF resource rdf:Statement. The XcerptRDF

term in Listing 1.3 states that bob believes that anna likes him. Listing 1.4 gives
the corresponding shorthand notation. The query below selects all reified state-
ments with the predicate eg:likes.

eg:bob{ eg:believes→ _:St{

2 rdf:type→ rdf:Statement ,

rdf:subject→ eg:anna ,

4 rdf:predicate→ eg:likes ,

rdf:object→ eg:bob

6 }

Listing 1.3. RDF reification

eg:bob{

2 eg:believes→ _:St{

<eg:anna{

4 eg:likes→ eg:bob }>

}

6 }

Listing 1.4. Reification shorthand

desc var Statement {{ < var _ {{ eg:likes→ var _ }} }}

Just as with the RDF container and collection vocabulary, the RDF model
theory does not associate any formal semantics with the reification vocabulary.
The intuitive semantics suggest that there must not be two distinct statements
with the predicate rdf:subject, rdf:predicate, or rdf:object originating from
the same node of an RDF graph. Secondly, if a node is subject of a statement
with one of these three properties, it must also be subject of statements with
the other two properties and be typed as an rdf:Statement. Third, all resources
appearing as the object of a statement with predicate predicate must be of
type rdf:Property. While RDF graphs that do not agree with these conventions
are perfectly valid under the RDF model theory, they cannot be represented
by XcerptRDF terms that use the XcerptRDF shorthand syntax for reification. In
other words, every XcerptRDF term that only uses the shorthand syntax for as-
serting reified statements agrees with the intuitive semantics of RDF reification.
Still, arbitrary RDF graphs can be encoded in XcerptRDF making use of the
unabbreviated syntax.

3.3 XcerptRDF Programs, Rules, Label, Term/Graph and CBD
variables

An XcerptRDF program is a set of XcerptRDF rules. An XcerptRDF rule consists
of a query part and a construct part. Just as in logic programming, XcerptRDF

programs may be evaluated in a forward or backward chaining manner. During a
forward chaining evaluation of an XcerptRDF program the query part of a rule is

evaluated first, resulting in a set of variable assignments (an assignment includes
one binding for each variable in the query), and subsequently this set is applied
to the construct part of the rule.

During the evaluation of an Xcerpt query, values for variables are determined
by an algorithm called simulation unification[5]. Variables serve as a means of
carrying over nodes or subgraphs from the data being queried to the result to be
computed. A set of bindings for a set of distinct variables is called a substitution
and a set of substitutions for the same set of variables is called a substitution
set. As mentioned above, XcerptRDF differentiates between three different kinds
of variables: label variables, term variables and variables for concise bounded
descriptions.

Label variables are bound to single atomic values, i.e. to URIs, blank nodes
or RDF literals. Depending on their appearance within an XcerptRDF query term,
they may either be bound to subjects, predicates or objects of RDF statements.
When authoring XcerptRDF programs, care must be taken that label variables
appearing in object position in the query also appear in object position in the
construct term of a rule. Otherwise, the application of the substitution set com-
puted by evaluating the query term to the construct term of the rule may result
in RDF graphs that have literals in subject position, which are invalid accord-
ing to the RDF data model. Similar constraints hold for blank nodes. It can be
easily determined at compile time whether an XcerptRDF rule is safe in the sense
of only generating valid RDF graphs.

In contrast to label variables, the bindings for graph variables are not sin-
gle atomic values, but entire RDF subgraphs rooted at the node of the RDF
graph that is matched by the node in the query that carries the graph variable.
Care must be taken when using graph variables, since in the case of densely
interconnected RDF graphs, graph variables may be bound to the entire data.
In practical applications such as FOAF or DOAP documents, this is, however,
rarely the case.

Variables for concise bounded descriptions (CBD) are a trade-off between
label variables and graph variables. A CBD of a resource is “a general and
broadly optimal unit of specific knowledge about that resource to be utilized by,
and/or interchanged between, semantic web agents” [8]. For space reasons, we
do not reproduce the exact definition of CBDs, but rather refer to [8]. XcerptRDF

treats CBD-variables in the same way as graph variables.

4 Term Simulation including Containers, Collections and
Reification

Ground query term simulation is a method for formally specifying the semantics
of a pattern based query language, and has first been proposed in [5] for giving a
semantics to Xcerpt query terms on semi-structured data. Simulation formalizes
the intuitive notion of matching a pattern with some data. Simulation is designed
to be a transitive relation and to coincide with the subsumption relationship –

i.e. a term t1 simulates with another term t2 iff t1 subsumes t2 under simulation.
This property of simulation has recently been shown in [9].

In this section we extend the definition of simulation from Xcerpt terms over
XML data to Xcerpt terms over RDF data. For the sake of brevity we only
provide the definition for terms excluding the constructs desc, optional and
without. The interested reader is referred to [6].

Definition 3 (Ground XcerptRDF term simulation). Let q1 and q2 be two
ground XcerptRDF terms. A relation S is a simulation of q1 into q2, if the follow-
ing conditions hold.

– (q1, n) ∈ S for some node n in q2.
– if (q, q′) ∈ S, then there must be some injective mapping π from Child(q) to
Child(q′) such that (c, π(c)) ∈ S. If q has breadth-complete subterm specifi-
cation, π must be bijective.

– if (q, q′) ∈ S and q is typed as an RDF bag by a subterm b using the bagOf
keyword, then also q′ must be typed as an RDF bag by a term b′ using the
bagOf keyword such that (b, b′) ∈ S. The same holds for the keywords setOf,
seqOf and listOf.

– if (q, q′) ∈ S and q is of the form bagOf{{. . .}}, then also q′ must start
with the bagOf keyword, and there must be some injective mapping π from
the elements e1, . . . en in q to the elements in q′ such that (ei, π(ei)) ∈ S
for all 1 ≤ i ≤ n. If q is breadth-complete, then the mapping π must be
bijective. Analogous conditions hold for the cases where q starts with the
other keywords for RDF collections and containers.

– if (q, q′) ∈ S and q has some subterm s of the form < t > – i.e. a reified
subterm – then q′ must have some reified subterm s′ of the form < t′ > with
(t, t′) ∈ S.

We say that an XcerptRDF q simulates into an XcerptRDF term q′ if there is a
simulation relation between q and q′. A (not necessarily ground) XcerptRDF term
q simulates into an XcerptRDF term q′ if there is a substitution σ : vars(q)→ D
such that all substitutions τ : vars(q′)→ D satisfy τ ◦ σ(q) simulates into τ(q′).

5 Support for Graph Properties in XcerptRDF

This section sheds light on the expressiveness of XcerptRDF query terms and
programs. Recently[1], the need for support of graph properties in RDF query
languages was highlighted, and a set of queries that should be easily formulated
and answered by an expressive RDF query language was outlined. In this sec-
tion we present solutions to all seven of these problems in XcerptRDF, thereby
underscoring the ease of reusing parts of an Xcerpt program, which is due to the
declarative, rule-based nature of XcerptRDF.

– A query which is very frequently asked according to [1] is the one of finding all
nodes adjacent to some resource eg:a. The following XcerptRDF query, which

is a disjunction of two XcerptRDF query terms, is a solution to this problem
and returns a unary substitution set, i.e. a substitution set including bindings
for only one variable. The variable var _ is an anonymous label variable, and
does not induce any variable bindings, but merely serves as a place-holder.

or(var R{{ var _ --> eg:a }}, eg:a{{ var _ --> var R }})

Finding all predicates of statements involving the resource eg:a is solved in
a very similar manner, but is omitted for the sake of brevity.

– The third problem of finding the degree of a given resource eg:a – i.e. the
number of statements involving the resource – is solved by the following rule
which is answer closed in the sense that the answer to this rule is again
an RDF graph5, and which makes use of the aggregate function &count for
computing the degree. The keywords CONSTRUCT and FROM delimit the head
of the rule; the rule body is found between the keywords FROM and END.

CONSTRUCT eg:a{ eg:degree-- > &count(all var P) }

FROM or(var _{{var P-- >eg:a}},eg:a{{var P-- >var _}}) END

– The following multi-rule program finds all directed paths between the re-
sources eg:a and eg:b. The first rule is the base case for recursively com-
puting the extension of the predicate from_to_path that represents all paths
in the RDF graph starting at eg:a, and which is represented as an ordinary
Xcerpt data term6, and the second rule is the recursive case. Finally, the
third rule selects only those paths that end at eg:b.

CONSTRUCT from_to_path[eg:a, var To ,

2 path[eg:a, path[var P, path [var To, nil]]]]

FROM eg:a{{ var P --> var To }} END

4 CONSTRUCT from_to_path[var From , var To,

path[var P, path[var To , var Path]]]

6 FROM and (from_to_path [var From , var To1 , var Path],

var To1{{ var Pred-- > var To }}) END

8 GOAL paths[all var Path]

FROM from_to_path[eg:a, eg:b, var Path] END

– The fifth problem of finding the distance between two given resources within
an RDF graph is easily composed by reusing the previous solution and by
making use of the aggregate function &count and the grouping construct all.

CONSTRUCT distance[

2 var From , var To, var Path , &count(all var Node)]

FROM

4 from_to_path[var From , var To ,

var Path as path [desc var Node]] END

– The sixth problem of finding fixed length paths between two given resources
eg:a and eg:b is a simple view on the data computed in the previous query:

5 Note that all XcerptRDF rules, and thus also programs, are answer closed in the sense
that they generate either RDF graphs or XML documents

6 Xcerpt data terms are isomorphic to fragments of XML documents

GOAL short_paths[eg:a, eg:b, all var Path]

FROM distance[eg:a, eg:b, var Path , 2] END

– Also the last problem of finding the diameter, i.e. the maximum length of
paths within an RDF graph is formulated as a simple view making use of
the aggregate function max.

GOAL diameter[&max(all var Depth)]

FROM distance[var _, var _, var _, var Depth] END

6 Conclusion

XcerptRDF is a an answer to the challenge which many developers of data inten-
sive applications on the Web are confronted with, and which is brought up by
the Semantic Web: the easy querying, transformation and reasoning with both
XML and RDF data. Future work includes the following goals:

(1) RDF support must be integrated into the prototype. (2) In order to
ensure termination of a larger set of programs, tabling of subgoal solutions must
be integrated into the prototype. (3) Query subsumption is a well known op-
timization issue in rule based query languages. Recently, subsumption between
Xcerpt queries has been shown to be decidable [9]. An algorithm for deciding
subsumption must be incorporated into the tabling engine mentioned above. (4)
Xcerpt’s semantics for programs including negation as failure and grouping con-
structs is currently limited to negation and grouping stratifiable programs. It
turns out, however, that many sensible Xcerpt programs do not necessarily fall
into this category, and that the notion of local stratification can be adapted to
logic programs involving a more involved kind of unification (such as simulation
unification). We are currently working on extending Xcerpt’s formal semantics
to include locally negation and grouping stratifiable programs.

References

1. Angles, R., Gutierrez, C.: Querying RDF Data from a Graph Database Perspective.
In: Proc. European Semantic Web Conf. (ESWC). Volume 3532 of LNCS. (2005)

2. Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation, W3C (February 2004)

3. Hayes, P.: RDF Semantics. W3C Recommendation, W3C (2004)
4. Schaffert, S., Bry, F.: Querying the Web Reconsidered: A Practical Introduction to

Xcerpt. In: Proc. Extreme Markup Languages. (2004)
5. Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Language for the

Web. PhD thesis, University of Munich (2004)
6. Pohl, A.: RDF Querying in Xcerpt: Language Constructs and Implementation.

Deliverable I4-Dx2, REWERSE (2008)
7. Manola, F., Miller, E.: RDF Primer. W3C Recommendation, W3C (February 2004)
8. Stickler, P.: CBD—Concise Bounded Description. W3C Submission, Nokia (2005)
9. Bry, F., Furche, T., Linse, B.: Simulation Subsumption or Déjà vu on the Web. In:

Proc. Int’l. Conf. on Web Reasoning and Rule Systems (RR). (2008)

