
Visual Languages: A Matter of Style

Sacha Berger François Bry Tim Furche

Institute for Informatics, University of Munich, Germany

{sacha.berger,francois.bry,tim.furche}@ifi.lmu.de

Christoph Wieser

Knowledge-Based Information Systems, Salzburg Research, Austria

christoph.wieser@salzburgresearch.at

Abstract

This articles submits the thesis that visual data modeling and programming
languages are conveniently conceived as rendering, or ‘styling’, of conventional,
textual languages. Styling has become a widespread technique with the advent
of the Web and of the markup language XML. With XML, application data can be
modeled after the application logic regardless of the intended rendering. Rendering
of XML documents is specified using style sheet languages like CSS. Provided the
styling language offers the necessary capabilities, style sheets can similarly spec-
ify a visual rendering of modeling and programming languages. The approach
described in this article considers visual languages that can be defined as a 1-to-1
visualization of (an abstract syntax of) a textual language. Though the approach is
obviously limited by the employed style sheet language, its advantages are mani-
fold: (a) visualization is achieved in a systematic manner from a textual counter-
part which allows the same paradigms to be used in several languages and ensures
a close conceptual relation between textual and visual rendering of a language; (b)
visual languages are much easier to develop than in ad-hoc manners; (c) the capa-
bility for adaptive styling (based on user preference such as disabilities or usage
context such as mobile devices) is inherited from Web style sheet languages such
as CSS.

To make CSS amenable for visual rendering of a large range of data model-
ing and programming languages, this article first introduces limited, yet powerful
extensions to CSS. Then, it demonstrates the approach on a use case, the logic-
based Web query and transformation language Xcerpt. Finally, it is argued that the
approach is particularly well-suited to logic-based languages in general.

1 Introduction
Styling has become a widespread technique with the advent of the Web and of the
markup language XML. This success of style sheet languages such as CSS is based

1

on the ability to separate the conceptual or logical structure of the Web data (be it in
HTML or XML format) from the visual presentation of that data. Such a separation
is convenient for adaptive presentation of content based on user preferences or usage
context (in particular, for human as well as machine users such as search engine bots),
for agile management and rapid development of Web sites, and for limiting the need
for content developers (such as writers) to concern themselves with presentation issues.

Many of the reasons why styling has succeeded for visualizing data apply also
to the visualization of programs (i.e., of data modeling and programming languages),
though interactive features become possibly even more important. The advantages of
styling for data are inherited: easy conception of new visual languages; adaptive styling
allowing different presentation based on user, device, etc.; systematic relation between
abstract concepts, visual, and textual rendering of the language limiting impedance
mismatch when switching between different renderings of a language. A further ad-
vantage is that the approach inherently permits “round-trips”: A program developed so
far as text (visually, resp.) can be further developed visually can be further developed
visually (as text, resp.).

Obviously, this approach is limited by the capabilities of the style sheet language
employed. We choose in this article CSS for its widespread use and impressive visu-
alization abilities: recent developments in the area of Web design and rich interfaces
for the Web as well as the development of CSS 3.0 demonstrate the versatility of CSS-
based visualization. The days of strictly hierarchical visualization are over with fea-
tures such as absolute positioning supported by all mainstream browsers. The only
remaining limitations of CSS are the rather rigid box model (which makes, e.g., ad-hoc
curves impossible) and the limited interactivity features. The first limitation is start-
ing to get addressed by recent proposals to add free-style drawing to HTML and CSS
(cf. canvas element). The resulting flexibility in visualization is demonstrated by
applications such as Yahoo! Pipes1.

A first step to address the second limitation is proposed in this article: a limited, yet
far reaching extension to the style sheet language CSS that makes it better suited for
the rendering of not only data but also programs where interactive behavior becomes
even more central. This extension (as well as the entire approach) is demonstrated on
a use case, the logic-based Web query and transformation language Xcerpt.

The visualization considered in this article is deliberately simple, so as to be real-
izable with a rather limited extension, called here CSSNG, of the dominant Web style
sheet language CSS. The generality of the approach should, nonetheless, become ev-
ident: Instead of CSS or CSSNG a style-sheet language offering other visualizations
could be used.

CSSNG is a novel extension of CSS 3, the newest version of CSS, introducing just a
few novel constructs for interactive or dynamic rendering and for markup visualization.
This limited extension of CSS 3 turns out to enable rather advanced visualization of
programs. Even though CSSNG is a limited and conservative extension of CSS, it adds
considerably to the power of CSS allowing (a) to specify many forms of (interactive or)
dynamic styling; (b) to generalize markup visualization; (c) to integrate the keyboard as
input device (where CSS 3 mostly treats only a pointer input device such as a mouse).

1http://pipes.yahoo.com/pipes/

2

XML source Presentation
1 <bib>
2 <book year="1994" id="42">
3 <title>
4 TCP/IP Illustrated
5 </title>
6 <author>

Figure 1: XML document (left side) and rendering using CSSNG (right side).

Thus, CSSNG allows for a declarative, concise, and simple specification of dynamic
document rendering in particular, when compared to current state-of-the-art techniques
such as ECMA Script [11]. The same applies for markup visualization where currently
far more complex technologies such as XSLT [14] must be employed.

2 CSS in a Nutshell
CSS 3 and its predecessors have been developed to simplify changes of the content as
well as of the presentation of HTML and XML documents by separating content from
presentation. It specifies formatting using rather simple guarded rules with formatting
instructions. The following rule demonstrates a well-known static styling feature:

a { text-decoration: underline; }

Intuitively, the rule reads as “if an element matches a, then format it by underlining
its contained text”. The left-hand, or selector, of the CSS rule selects HTML anchors
(denoted as a elements). The declaration on the right-hand side assigns the styling
parameter to XML elements matched by the selector of the rule. The use of head
puzzled me here to no end. So I used different notions. What do you think?

Also, some dynamic styling features are offered in CSS 3. For instance, the back-
ground color of an HTML anchor can be switched to yellow while the mouse cursor is
hovering (:hover) over it:

a:hover { background-color: yellow; }

Markup especially in XML documents often conveys application relevant infor-
mation (e.g., the role of a person associated with a book—author, editor, publisher,
reviewer, etc.). Therefore, it might be useful to visualize it. However, CSS 2.1 and
CSS 3 offer quite limited means for markup visualization which, in current Web appli-
cation, often forces the use of other, less declarative technology to complement CSS
such as ECMA script or server-side scripting languages. The following subsections 2.1
to 2.3 briefly introduce novel static CSSNG rules mainly aiming at visualizing XML
markup. Finally Section 2.4 introduces the rule-based interface for dynamic document
styling. Full details on how CSSNG extends CSS 3 can be found in [15].

3

Do we need the following paragraph. It’s just as in CSS and it really doesn’t matter
in this context, does it?
CSSNG rules such as specified in a file can be linked in an XML document via a
so-called processing instructions (PI) or in the header of an XHTML document. Note
that CSSNG extensions introduced for XML elements apply also to XHTML elements.

2.1 Markup Insertion
CSS 3 allows the insertion of plain text specified in a CSS style sheet. The pseudo-
elements ::before and ::after cause insertion of text before and after a selected
XML or HTML element.

Maybe explain why they are called pseudo-elements?
CSSNG extends these pseudo-elements of CSS 3. In addition to inserting plain

text in CSS 3, the CSSNG functions element(NAME,ATTRIBUTES, VALUE) and
attribute(NAME,VALUE) provide in addition means for inserting XML elements
and attributes before and after XML elements. The following example inserts a ele-
ments with a title-attribute of value “Tab” and content “element” before each element
in an XML document. See Figure 3 how this can then be employed to visualize these
new elements as “tabs” for hiding or unhiding information.

*::before { content: element("a",
attribute("title","Tab"),
"element") }

2.2 Markup Querying
CSS 3 provides the function attr(X) for querying the content of a known XML
attribute X of an XML element. The name of an XML element and its XML attributes
can not be queried. Implementing markup visualization as in Figure 1, i.e., where the
name of an element is used as content of a newly created element to make the markup
visible, without generalized markup querying means one rule for every XML element
type like bib.

CSSNG adds the function element-name() yielding the name of the currently
selected XML element. Furthermore, one XML element can host several XML at-
tributes. Therefore, CSSNG offers attribute rules selecting XML attributes instead of
XML elements. The CSSNG functions attribute-name() and -value() query
XML attribute names and values in the context of a selected XML element. The ex-
ample in Figure 2 implements a tab in front of each XML element listing the XML
element name and all of the XML elements’ attributes including their values as shown
in Figure 1.

2.3 Depth-dependent Styling
Styling depending on breadth (i.e., on position among siblings) is planned in CSS 3 [7].
Tables, for instance, can be styled using alternating background colors for each line.

4

XML source (see Figure 1)

1 ... <book year ="1994" id ="42"> ... </book> ...

CSSNG style sheet
1 *::before { content:
2 element("span", element("span", element-name())

3 * { element("span", attribute-name() " "

4 attribute-value())
5 })
6 }

Resulting XML tree
1 ...
2 book

3 year 1994

4 id 42

5
6 <book year="1994" id="42"> ... </book> ...

Figure 2: Generation of tabs. The presentation in Figure 1 is obtained by rendering the
resulting XML tree using further CSS 3 means.

CSSNG additionally offers styling depending on the depth (i.e., position among ances-
tors) of an XML element in an XML document: The pseudo-class :nth-descendant(an+b)
restricts selections to XML elements having an + b ancestors.

Figure 3 demonstrates the visualization of a highly nested XML document with
colors repeating on every third level. On the left side this rendering is realized using
CSSNG and alternatively using CSS 3. Thanks to its depth-dependent styling features,
the upper CSSNG style sheet needs only three rules. The CSS 3 style sheet below needs
one rule for every level. Hence, styling in CSS 3 is possible up to a certain depth only
as shown on the right side of Figure 3 using the CSS 3 style sheet on the lower right
side of Figure 3. Such a styling is also useful for applications such as the visualization
of threads in a discussion forum.

2.4 Dynamic Styling Generalized
Dynamic styling is necessary to support (basic) interactivity, i.e., to change formatting
(position, color, font, etc.) based on user input such as mouse clicks or move. CSS 3 is
limited to the dynamic pseudo-class :hover. This construct allows dynamic styling
in the local context of the mouse cursor only as demonstrated in Section 2. This is
not sufficient to implement a behavior like folding a tab as demonstrated in Section 5:
when the mouse cursor moves away, the cursor does no longer hover over the selected
XML element, and its tab would be automatically unfolded.

CSSNG introduces dynamic pseudo-classes for all HTML intrinsic events [1] such

5

CSSNG Presentation using CSS 3
1 *:nth-descendant(3n+1) { background-color: A; }
2 *:nth-descendant(3n+2) { background-color: B; }
3 *:nth-descendant(3n+3) { background-color: C; }

CSS 3
1 * { background-color: A; }
2 * * { background-color: B; }
3 * * * { background-color: C; }
4 * * * * { background-color: A; }
5 * * * * * { background-color: B; }
6 * * * * * * { background-color: C; }
7
8 * * * * * * * { background-color: A; }
9 * * * * * * * * { background-color: B; }

10 ...

Figure 3: Comparing Depth-dependent Styling using CSSNG and CSS 3.

as onclick or onkeypress (see [15] for sample applications). Instead of using
HTML intrinsic event attributes like for scripting languages, CSSNG allows a stan-
dalone specification of dynamic styling in separate CSSNG files that can be applied for
multiple documents. The following example in Figure 4 shows a rather simple dynamic
CSSNG rule.

a:onclick(10) { background-color: green; }

Figure 4: Dynamic Styling of an adaptive hyperlink (CSSNG).

The rule in Figure 4 implements an adaptive hyperlink. After 10 clicks on the
hyperlink the background color changes to green meaning that the hyperlink on the
Web page is frequented by the user.

This extension makes it possible to apply dynamic styling on different sections of
an XML document at the same time. For instance if two hyperlinks were clicked ten
times in a Web page, both will be presented with different background colors.

Similar extensions using HTML intrinsic events have been already proposed by the
W3C [9]. The following paragraphs introduce the novel capabilities of CSSNG:

Recurrence Patterns. All CSSNG dynamic pseudo classes support recurrence pat-
terns, an+b, as parameters. For instance the CSSNG selector *:onclick(3n+1)
detects the first, the fourth, the seventh, etc. click on an arbitrary XML element. More
generally, a CSSNG selector fires, if an + b events occurred before.

On one hand such recurrence patterns allow to reuse CSSNG rules for folding and
unfolding as demonstrated in the following paragraph. On the other hand recurrence
patterns allow to “delay” the application of rules up until a number of events, for in-
stance clicks, as demonstrated in the previous Section (see adaptive hyperlink above).

6

Dynamic Styling Combined. A noticeable feature of the (novel) dynamic pseudo-
classes of CSSNG is their compatibility with CSS 3 combinators, which allow to specify
tree patterns.

Figure 5: Folded visualization of an XML element title. The corresponding un-
folded example is shown in Figure 1.

A CSS 3 selector is an alternating sequence of so-called simple selectors (already
informally introduced in Section 2) and combinators. For instance, the combinator +
means that the simple selector on its left side must be a preceding sibling of the simple
selector on the righthand side. The CSS declaration (in curly braces) is only applied to
the XML element matched by the right simple selector.

The following example (see Figure 6) implements alternating folding and unfold-
ing for the visualization of arbitrary (simple selector *) XML elements (see Figure 5).
A click on a tab of a visualized XML element like title folds its visualization.
Another click on a tab unfolds it (see title in Figure 1):

1 tab:onclick(2n+1) + * {display:none} Fold on odd number of clicks.
2 tab:onclick(2n+2) + * {display:block} Unfold on even number of clicks.

Figure 6: Combined dynamic styling in CSSNG (rendering in Figure 5).

In the example above, the lefthand selector of the first CSSNG rule above is com-
posed of the two simple selectors tab:onclick(2n+1) and * combined with the
CSS 3 combinator, +. The visualization of an XML element matched by the simple
selector * disappears, if a mouse click was performed on its preceding sibling XML
element, while its tab stays visible.

Structure-Independent Styling. A static CSS 3 styling rule is applied to all XML
elements matching its selector. A dynamic CSS 3 styling rule is applied only to XML
elements being in the context of an input device such as an XML element lying under
the mouse cursor. CSSNG abolishes this restriction and allows (novel) so-called mono-
rama and panorama selections as demonstrated in Figure 7: The Author element
on the left side is highlighted, while the mouse cursor is hovering over the Author
element on the right side.

7

Monorama and panorama is mentioned here but never further explained or used. I
think we should add some explanation of this feature.

1 Author { background-color: black; }
2 Author:hover ? Author { background-color: white; }

Figure 7: Highlighting of Xcerpt variables.

The CSS 3 rule in line 1 defines the standard background black for XML Author
elements. In line 2 the CSSNG combinator ?, called if, is applied as follows: If an
XML Author element is hovered in an XML document, set the background color of
all XML Author elements to white.

A proof-of-concept prototypical implementation of CSSNG was implemented as
part of a diploma thesis [15] and presented [9].

3 Styling of Logic Languages
The approach described in the previous section to conceive a visual language as a ren-
dering, or styling, of a textual language seems for the following two reasons especially
convenient for logic languages:

• Logic languages are declarative, i.e. they focus on both the structural and con-
ceptual organization of the data.

• Logic languages are often “answer closed” in the sense of query languages:
queries or conditions resemble data and data (i.e., answers) can be used in place
of queries. This makes style sheet languages developed for data visualization
easily adaptable for program visualization since they are already able to visual-
ize the data.

• Logic languages are often referentially transparent allowing mostly context-independent
visualization of language constructs. In particular, this allows visual aids such as
highlighting of related parts in a program or rule (e.g., variable occurrences or
predicate symbols).

• Logic languages come in families that share traits, like e.g. modal languages,
rule-based languages, logic programming languages, frame logic languages. With
the approach proposed, “visualizations” can be rather easily developed and ap-
plied to various languages of a same language family.

For this reasons, it is the firm belief of the authors that the approach proposed in
this article has the potential to boost the development and testing of visual languages,
especially of visual logic languages.

8

4 visXcerpt — the Visual Twin Sibling of Xcerpt
As an example of the visualization of a textual language using the presented approach
and CSSNG, the Web query and transformation language Xcerpt[13] and its visual
counterpart visXcerpt[2] are presented. Xcerpt is a rule based deductive language in
the spirit of SQL or Datalog but for semi-structured data. As a textual language, it
comes in two syntax flavors — an abbreviated syntax and an XML syntax. Rules con-
sist of a head, also called construct pattern and a body consisting of logically connected
query patterns. Query and construction share values by means of shared variables, rules
query each other heads employing forward or backward chaining. Construct patterns
may contain special grouping constructs to collect multiple variable bindings in one re-
sult, queries may consist of incomplete query patterns with incompleteness in breadth
and/or depth and/or order, reflecting the incertitude about size and structure of doc-
uments on the web. Patterns are hence like “examples” of web data searched for in
given documents.

The central part of visXcerpt, the visual rendering of Xcerpt, is the visualization
of Web data, of XML documents. As Xcerpt itself comes in XML syntax, half the
job is done by visualizing XML.2 Further aspects, like partiality, grouping constructs
and variables are then added to get a full featured visualization of query and construct
patterns. Rules are just represented as horizontal aligned head and body, related by an
arrow, though more involved visualizations (e.g., grouping by related root labels) can
be realized with CSSNG.

Term Visualization. Web data and patterns are considered to have a term like struc-
ture. Terms are rendered as boxes with their name as a tab on the top, the box contains
all tabbed boxes of the subterms in the order they occur. The rendering is conceived to
be suitable for most web browsers, considering that they are a wide spread technology
with high adaptability to various screen sizes and resolutions. Order is given by a left-
to-right and top-to-bottom flow layout, but the layout directions should be adapted to
local writing habits of the user’s culture. Width is given by the width of the display or
browser employed. Nested boxes are further distinguished using colors, hence colors
represent nesting depth. To be able to make a reasonable selection of well assorted, dis-
tinguishable and pleasant color themes, colors of upper levels are recycled for deeper
nestings.

Graph Visualization On the Web, graph structures also need to be represented, e.g.
RDF[12] data representing graph sharped structures or hyperlink structure. In textual
representations of graph structures, references are used along a spanning tree of the
graph. The presented approach of visualizing such graph structures is to model the
references as hyperlinks in a web browser. This way, even very large graph structures
can be represented and access to any references item is achieved by user interaction
with constant complexity – a click on a hyperlink. While browsers often provide some
means of navigating back along edges represented by hyperlinks, it is arguably useful

2To some extent, this applies to any language as we can always consider for styling the XML serialization
of the abstract syntax tree of a program.

9

to explicitly give hyperlinks for reverse traversal of edges, as hence the user is not
restricted in his backward movement along edges he just visited.

Information focusing For large documents, it is of vital necessity to give users the
ability to hide temporarily unneeded information or to focus on relevant data. This is
achieved by means of folding in or out terms behind their name tagged tabs. While
elements are aligned vertically, tabs are first aligned horizontally and then vertically,
saving even more space. The concept is strongly inspired by tree browser visualization
as e.g. seen on the well known Windows file browser.

At this level, pure static visualization starts to merge with user interaction. A vi-
sualization with adequate support of user interaction, especially of editing, is indeed
much more useful than a static visualisation.

Textual Xcerpt Program, and visXcerpt rendering of it.
1 CONSTRUCT
2 results[
3 all result[
4 var Title,
5 var Author
6]]
7 FROM
8 in(resource="file:procs04.xml")
9 proceedings04[[

10 papers[[
11 paper[[
12 var Title as title[[]] ,
13 var Author as author[[]]
14]]
15]]
16]]
17 END

Figure 8: A single rule Xcerpt program (in abbreviated textual syntax) along with its
visXcerpt rendering — the query part exploits a partial pattern (indicated by dotted
lines in the visualization) to search for papers in a proceedings database, constructing
title/author pairs all grouped in a list of results. All Title variables are highlighted as
the mouse is hovering above one of them in visXcerpt.

A Special Purpose Editor Model For textual languages, copy-and-paste and text
typing based editors are wide spread. Central to textual editing, is a cursor concept,
that usually is a separator of the one dimensional program. For the presented visual
approach, a separator seemed not intuitive, hence a context metaphor is used for edit-
ing: each box is a context, it is possible to cut, copy or delete it with or without its
sub boxes, it is possible to paste the content of the cut/copy buffer into, before, after or
around a context and hence term. The rich copy and paste model is accompanied by a
template concept, giving access to all program constructs and possibly example terms
or structures that can be altered, reduced or extended.

10

I doubt the use of the following section to the reader. If we want to talk about this,
we need to make it much clearer what is going on. I suggest dropping this section and
merely stating in the conclusion briefly that we have done an implementation. Actually
that sentence already is in the conclusion :-)

5 Realizing CSSNG: CSS & XSLT
As a proof-of-concept, we choose to implement CSSNG by a combination of XSLT
transformations and reductions to standard XHTML and CSS to allow for maximum
portability and fast implementation.

All data formats and transformations except CSSNG Parser are based on W3C
standards. Except for the CSS and CSSNG parsers, all other program transformations
are implemented in XSLT [14]. The XSLT transformations essentially evaluate the
(static) rules in the CSSNG stylesheet statically and adorn the XHTML elements to
allow the use of standard CSS (and ECMA Script for the dynamic styling). The Styler
is the heart of the system. It processes all XHTML elements in the document tree of
an (Un)styled Document recursively. Each XHTML element passes through one test
for each CSSNG rule in a CSSNG style sheet. If a test succeeds, the XHTML style
attribute of the current XHTML element is modified. The tests are implemented in
XPath [10]. Since tests are executed from the perspective of each XML element,
CSSNG selectors need to be translated to XPath selecting XML elements in reverse
direction as demonstrated in the following example (see Figure 9):

CSSNG XPath

div :onclick(2n+1) + * self:: * /preceding-sibling:: div [

span[@class=’onclick’] mod 2 = 1 mod 2]

Figure 9: Translation of CSS Selectors in XPath (CSSNG).

6 Outlook and Conclusion
The presented approach — obtaining a visual language by mere rendering or styling of
a textual language — has been explored with the textual query language Xcerpt. To the
largest extend, this has been achieved using standard CSS, for the most salient features
however an extension of CSS has been conceived.

6.1 Conclusion
visXcerpt has been prototypically implemented and successfully applied for the pre-
sentation of Xcerpt[5][4], widely easing the comprehension of the concepts of Xcerpt.
visXcerpt’s editor model turned out convenient for a wide scale of Xcerpt programming

11

tasks from the area of HTML content extraction, creation and wrapping, over XML
data transformation to Semantic Web and hybrid Web and Semantic Web reasoning[3].

CSSNG as an extension of CSS turned out to be easily realizable without heavy
computational overhead compared to CSS-2 and CSS-3. It proved itself to be not only
a tool for the implementation of visXcerpt, but especially for sophisticated visualiza-
tion of XML data or arbitrary term structures with easily realizable domain specific
behavior.

The approach of conceiving a visual language based on a textual back-end turned
out convenient in both cases, for the creator of the visual language as well as for the
programmer using the language — creating a visual language as a rendering of a textual
one was reasonably easy, and programmers using it where pleased to be able to switch
between textual and visual representation, hence combining the best editing features of
visual and textual world.

To the best of the knowledge of the authors similar generic approaches of devel-
oping visual languages as mere rendering using CSS and extensions have not been
proposed so far.

6.2 Outlook
Further interesting research in the area of Xcerpt/visXcerpt is to investigate about type
support, not only in the textual language for checking and validation of programs[6],
but also in the editing process. This could help novice users to by just providing editing
features that lead from one valid program to another, as well as providing a type based
template approach over the example based approach.

In the area of generic visualization of textual languages, it is needed to system-
atically investigate further features/functionalities that would be desirable for visual
languages and what existing styling languages would be a convenient basis for adding
these features.

It would be interesting to develop a few style-sheet languages which could render
various textual modeling and/or programming languages as visual languages after var-
ious visualization paradigms. The Semantic Web logic languages RDF, OWL and the
new Rule Interchange Format (RIF) would be specially promising candidates for such
investigations.

I don’t quite understand the previous paragraph. Could you clarify it? The text
seems to indicate that we are looking for more expressive style sheet languages, the
examples however seem to indicate that we are looking for further logic languages to
which to apply CSS-NG (which would make much more sense for me :-)

References
[1] S. Adler, A. Berglund, J. Caruso, S. Deach, T. Graham, P. Grosso, E. Gutentag,

A. Milowski, S. Parnell, J. Richman, and S. Zilles. HTML 4.01. W3C, 1999.

[2] S. Berger. Conception of a Graphical Interface for Querying XML. Diploma
thesis, Institute for Informatics, LMU, Munich, 2003.

12

[3] S. Berger, F. Bry, O. Bolzer, T. Furche, S. Schaffert, and C. Wieser. Querying
the standard and semantic web using xcerpt and visxcerpt. In Proceedings of
European Semantic Web Conference, Heraklion, Crete, Greece (29th May–1st
June 2005), 2005.

[4] S. Berger, F. Bry, and T. Furche. Xcerpt and visxcerpt: Integrating web querying.
In Proceedings of Programming Language Technologies for XML, Charleston,
South Carolina (14th January 2006), 2006.

[5] S. Berger, F. Bry, S. Schaffert, and C. Wieser. Xcerpt and visXcerpt: From
Pattern-Based to Visual Querying of XML and Semistructured Data. In Pro-
ceedings of 29th Intl. Conference on Very Large Databases, 2003.

[6] S. Berger, E. Coquery, W. Drabent, and A. Wilk. Descriptive typing rules for
xcerpt. In Proceedings of Third Workshop on Principles and Practice of Semantic
Web Reasoning, Dagstuhl, Germany (11th–16th September 2005). REWERSE,
2005.

[7] B. Bos. Cascading Style Sheets Under Construction. W3C, 2005.

[8] B. Bos, H. W. Lie, C. Lilley, and I. Jacobs. Cascading Style Sheets. W3C, 1998.

[9] F. Bry and C. Wieser. Web queries with style: Rendering xcerpt programs with
css-ng. In Proc. of 4th Workshop on Principles and Practice of Semantic Web
Reasoning, 2006.

[10] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0. W3C, 1999.

[11] ECMA. Standard ECMA-262, ECMAScript Language Specification, 1999.

[12] O. Lassila and R. R. Swick. Resource Description Framework (RDF). W3C,
1999.

[13] S. Schaffert and F. Bry. Querying the Web Reconsidered: A Practical Introduction
to Xcerpt. In Proc. of Extreme Markup Languages, 2004.

[14] W3C. Extensible Stylesheet Language (XSL) 1.0, 2001.

[15] C. Wieser. CSSNG: An Extension of the Cascading Styles Sheets Language
(CSS) with Dynamic Document Rendering Features. Diploma thesis, Institute
for Informatics, LMU, Munich, 2006. http://www.pms.ifi.lmu.de/
publikationen/.

13

